pytorch2.x 官方quickstart测试

这篇具有很好参考价值的文章主要介绍了pytorch2.x 官方quickstart测试。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1.本地环境

D:\python2023>nvidia-smi
Thu Jul 27 23:27:45 2023
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 497.29       Driver Version: 497.29       CUDA Version: 11.5     |
|-------------------------------+----------------------+----------------------+
| GPU  Name            TCC/WDDM | Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  NVIDIA GeForce ... WDDM  | 00000000:03:00.0  On |                  N/A |
| 27%   36C    P8     8W / 120W |    397MiB /  3072MiB |      1%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
|    0   N/A  N/A      1288    C+G   Insufficient Permissions        N/A      |
|    0   N/A  N/A      3444    C+G   ...y\ShellExperienceHost.exe    N/A      |
|    0   N/A  N/A      7420    C+G   ...nputApp\TextInputHost.exe    N/A      |
|    0   N/A  N/A      7896    C+G   C:\Windows\explorer.exe         N/A      |
|    0   N/A  N/A      8392    C+G   ...b3d8bbwe\WinStore.App.exe    N/A      |
|    0   N/A  N/A      8872    C+G   ...5n1h2txyewy\SearchApp.exe    N/A      |
|    0   N/A  N/A     10860    C+G   ...lPanel\SystemSettings.exe    N/A      |
|    0   N/A  N/A     11536    C+G   ...se6\Application\360se.exe    N/A      |
|    0   N/A  N/A     14264    C+G   ...\qbblinktrial\browser.exe    N/A      |
+-----------------------------------------------------------------------------+

D:\python2023>gcc --version
gcc (x86_64-posix-sjlj-rev0, Built by MinGW-W64 project) 8.1.0
Copyright (C) 2018 Free Software Foundation, Inc.
This is free software; see the source for copying conditions.  There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.


D:\python2023>python --version
Python 3.8.5

D:\python2023>

2.安装pytorch (Windows GPU版本)

注意 安装时一定要指定–index-url https://download.pytorch.org/whl/torch/ ,否则安装的是cpu版本,可以访问https://download.pytorch.org/whl/torch/,找到需要的版本如torch-2.0.1+cu117-cp38-cp38-win_amd64.whl 用迅雷下载比较快

pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu117 

pytorch2.x 官方quickstart测试,AI,pytorch

3. 官方quickstart

按官方 quickstart拼起來的代码,如果有GPU且安装的GPU版本pytorch则跑GPU上否则CPU(所有CPU),本地测试20CPU与1 个geforce GPU耗时差不多20s文章来源地址https://www.toymoban.com/news/detail-611445.html

import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor

#####################
# Download training data from open datasets.
training_data = datasets.FashionMNIST(
    root="data",
    train=True,
    download=True,
    transform=ToTensor(),
)

# Download test data from open datasets.
test_data = datasets.FashionMNIST(
    root="data",
    train=False,
    download=True,
    transform=ToTensor(),
)
#####################
batch_size = 64

# Create data loaders.
train_dataloader = DataLoader(training_data, batch_size=batch_size)
test_dataloader = DataLoader(test_data, batch_size=batch_size)
for X, y in test_dataloader:
    print(f"Shape of X [N, C, H, W]: {X.shape}")
    print(f"Shape of y: {y.shape} {y.dtype}")
    break
#####################
# Get cpu, gpu or mps device for training.
device = (
    "cuda"
    if torch.cuda.is_available()
    else "mps"
    if torch.backends.mps.is_available()
    else "cpu"
)
print(f"Using {device} device")


# Define model
class NeuralNetwork(nn.Module):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.linear_relu_stack = nn.Sequential(
            nn.Linear(28 * 28, 512),
            nn.ReLU(),
            nn.Linear(512, 512),
            nn.ReLU(),
            nn.Linear(512, 10)
        )

    def forward(self, x):
        x = self.flatten(x)
        logits = self.linear_relu_stack(x)
        return logits


model = NeuralNetwork().to(device)
print(model)
#######################################
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)


########################################
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)
    model.train()
    for batch, (X, y) in enumerate(dataloader):
        X, y = X.to(device), y.to(device)

        # Compute prediction error
        pred = model(X)
        loss = loss_fn(pred, y)

        # Backpropagation
        loss.backward()
        optimizer.step()
        optimizer.zero_grad()

        if batch % 100 == 0:
            loss, current = loss.item(), (batch + 1) * len(X)
            print(f"loss: {loss:>7f}  [{current:>5d}/{size:>5d}]")


#######################################
def test(dataloader, model, loss_fn):
    size = len(dataloader.dataset)
    num_batches = len(dataloader)
    model.eval()
    test_loss, correct = 0, 0
    with torch.no_grad():
        for X, y in dataloader:
            X, y = X.to(device), y.to(device)
            pred = model(X)
            test_loss += loss_fn(pred, y).item()
            correct += (pred.argmax(1) == y).type(torch.float).sum().item()
    test_loss /= num_batches
    correct /= size
    print(f"Test Error: \n Accuracy: {(100 * correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")


if __name__ == '__main__':
    epochs = 5
    for t in range(epochs):
    	start = time.time()
        print(f"Epoch {t + 1}\n-------------------------------")
        train(train_dataloader, model, loss_fn, optimizer)
        test(test_dataloader, model, loss_fn)
        end = time.time()
        print(f"epoch Done:{end-start}")
    print("Done!")

D:\python2023>nvidia-smi
Fri Jul 28 00:42:59 2023
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 497.29       Driver Version: 497.29       CUDA Version: 11.5     |
|-------------------------------+----------------------+----------------------+
| GPU  Name            TCC/WDDM | Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  NVIDIA GeForce ... WDDM  | 00000000:03:00.0  On |                  N/A |
| 27%   37C    P5     9W / 120W |   1007MiB /  3072MiB |      9%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
|    0   N/A  N/A     11536    C+G   ...se6\Application\360se.exe    N/A      |
|    0   N/A  N/A     14264    C+G   ...\qbblinktrial\browser.exe    N/A      |
|    0   N/A  N/A     15648      C   ...ython\Python38\python.exe    N/A      |
+-----------------------------------------------------------------------------+

到了这里,关于pytorch2.x 官方quickstart测试的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • pytorch2.0.1 安装部署(cpu+gpu) linux+windows

    官网打开可能较慢,耐心等待,可以正常打开。 链接:pytorch官网 2023年12月10日更新,演示版本2.1.1 如果中间有任何报错,参考最后一节的处理 1.pytorch是一个和tensorflow类似的框架 如果需要安装tensorflow,可以参考: tensorflow 1,2 cpu+gpu(windows+linux)安装 2.安装anaconda 主要是为

    2024年02月09日
    浏览(47)
  • Ubuntu22.04 LTS + CUDA12.3 + CUDNN8.9.7 + PyTorch2.1.1

    本文记录Ubuntu22.04长期支持版系统下的CUDA驱动和cuDNN神经网络加速库的安装,并安装PyTorch2.1.1来测试是否安装成功。 如果是旧的不支持UEFI启动的主板,请参考本人博客U盘系统盘制作与系统安装(详细图解) 如果是新的支持UEFI启动的主板,请参考本人博客UEFI下Windows10和Ubun

    2024年02月03日
    浏览(44)
  • 【自学记录】【Pytorch2.0深度学习从零开始学 王晓华】第四章 深度学习的理论基础

    遇到的疑问: 1、对神经网络前向计算中,关于系数矩阵W的讨论。 上一章讲到了层结构是【out,in】,所以我觉得在计算Y=WX+b的时候,W矩阵也应该是【out,in】的形状。但是该代码(或者正规代码实现流程)不是的,他是一个这样的结构: 所以,W矩阵还是【in,out】结构,a1=X1 W

    2024年04月09日
    浏览(57)
  • AMD显卡 Ubuntu 部署Stable DIffusion WebUI基于Pytorch2.0.0 Rocm5.4.2

    Ubuntu 20.04.6 LTS Python系统自带3.8版本(虽然官方要求3.10.6,但是我3.8运行没发现问题) 显卡RX6500XT 4G Navi24核心 官网下载安装 在下载好的驱动文件目录,执行安装命令 先将源列表文件sources.list备份 打开sources.list文件 替换为国内镜像源,保存 这里我用阿里云的镜像源 https://d

    2024年02月02日
    浏览(43)
  • 【超简易安装】在linux集群服务器上使用conda安装高版本cuda(cuda-11.8)和pytorch2.0

    由于项目代码要求pytorch2.0版本,而pytorch2.0版本需要cuda11.8,高于我之前的11.0的cuda版本。 因此考虑使用conda新建一个虚拟环境,在里面使用高版本的cuda和pytorch。 我使用的是lunix多人集群服务器。集群服务器需要用作业调度系统,也就是bsub命令之后才能提交作业,运行任务。

    2024年03月17日
    浏览(68)
  • 全网最新最全的基于Tensorflow和PyTorch深度学习环境安装教程: Tensorflow 2.10.1 加 CUDA 11.8 加 CUDNN8.8.1加PyTorch2.0.0

    本文编写日期是:2023年4月. Python开发环境是Anaconda 3.10版本,具体Anaconda的安装这里就不赘述了,基础来的。建议先完整看完本文再试,特别是最后安装过程经验分享,可以抑制安装过程中一些奇怪的念头,减少走弯路。 目录 1. NVidia驱动安装  2. 安装CUDA Toolkit 3. 安装Tensorfl

    2024年02月08日
    浏览(55)
  • pyqt5 QuickStart

       在使用pyqt5之前,建议下载一个Anaconda环境,这样下载python包更方便,本篇文章是建立在已经安装好Anaconda的情况下使用的。IDE就是标准的PyCharm了。   python终端执行下面两个安装命令:   安装成功后,首先看一下自己能不能找到QT Designer,路径就在:AnacondaLibsite-

    2024年02月10日
    浏览(41)
  • 【图像分割】【深度学习】SAM官方Pytorch代码-各模块的功能解析

    Segment Anything:建立了迄今为止最大的分割数据集,在1100万张图像上有超过1亿个掩码,模型的设计和训练是灵活的,其重要的特点是Zero-shot(零样本迁移性)转移到新的图像分布和任务,一个图像分割新的任务、模型和数据集。SAM由三个部分组成:一个强大的图像编码器(Image

    2024年02月11日
    浏览(39)
  • 基于 Docker 的 python grpc quickstart

    工作之后一直使用的 RPC 框架是 Apache 的 thrift,现在发现 grpc 更流行,所以也要学习一下,先来简单的跑一下 demo。在本地安装运行也很方便,不过因为有了 docker,所以在 docker 里面安装运行隔离性更好,顺便也提升 docker 命令行的熟练度。 docker build -t rpc_py:0.2 . 注意:因为我

    2024年04月09日
    浏览(41)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包