DQN基本概念和算法流程(附Pytorch代码)

这篇具有很好参考价值的文章主要介绍了DQN基本概念和算法流程(附Pytorch代码)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

❀DQN算法原理

DQN,Deep Q Network本质上还是Q learning算法,它的算法精髓还是让 Q 估计 Q_{估计} Q估计尽可能接近 Q 现实 Q_{现实} Q现实,或者说是让当前状态下预测的Q值跟基于过去经验的Q值尽可能接近。在后面的介绍中 Q 现实 Q_{现实} Q现实也被称为TD Target

再来回顾下DQN算法和核心思想
dqn pytorch,强化学习,算法,pytorch,强化学习

相比于Q Table形式,DQN算法用神经网络学习Q值。
dqn pytorch,强化学习,算法,pytorch,强化学习

我们可以理解为神经网络是一种估计方法,神经网络本身不是DQN的精髓,神经网络可以设计成MLP也可以设计成CNN等等,DQN的巧妙之处在于两个网络、经验回放等trick

下面介绍下DQN算法的一些trick,是希望帮助小伙伴们梳理区分两个网络的作用,阐述清楚经验回放等概念的本质,以及使用它们训练网络的技巧

Trick 1:两个网络

DQN算法采用了2个神经网络,分别是evaluate network(Q值网络)和target network(目标网络),两个网络结构完全相同

  • evaluate network用用来计算策略选择的Q值和Q值迭代更新,梯度下降、反向传播的也是evaluate network
  • target network用来计算TD Target中下一状态的Q值,网络参数更新来自evaluate network网络参数复制

设计target network目的是为了保持目标值稳定,防止过拟合,从而提高训练过程稳定和收敛速度

这里会有容易混淆的地方,梯度更新的是evaluate network的参数,不更新target network,然后每隔一段时间将evaluate network的网络参数复制给target network网络参数,那么优化器optimizer设置的时候用的也是evaluate network的parameters

Trick 2:基本框架

算法分成两个部分,分别是策略选择和策略评估,这也是强化学习算法基本的两个模块,梳理算法逻辑的时候从策略选择和策略评估两个方面入手,更容易弄清楚。策略选择部分,epsilon-greedy策略选择动作,策略评估部分使用贪婪策略

Trick 3:经验回放Experience Replay

DQN算法设计了一个固定大小的记忆库memory,用来记录经验,经验是一条一条的observation或者说是transition,它表示成 [ s , a , r , s ′ ] [s, a, r, s'] [s,a,r,s],含义是当前状态→当前状态采取的动作→获得的奖励→转移到下一个状态

一开始记忆库memory中没有经验,也没有训练evaluate network,积累了一定数量的经验之后,再开始训练evaluate network。记忆库memory中的经验可以是自己历史的经验(epsilon-greedy得到的经验),也可以学习其他人的经验。训练evaluate network的时候,是从记忆库memory中随机选择(划重点哦,是随机选择!)batch size大小的经验,喂给evaluate network

设计记忆库memory并且随机选择经验喂给evaluate network的技巧打破了相邻训练样本之间相关性,试着想下,状态→动作→奖励→下一个状态的循环是具有关联的,用相邻的样本连续训练evaluate network会带来网络过拟合泛化能力差的问题,而经验回放技巧增强了训练样本之间的独立性

❀算法流程图

每个episode流程是下面这样
dqn pytorch,强化学习,算法,pytorch,强化学习

其中choose_action、store_transition、learn是相互独立的函数模块,它们内部的算法逻辑是下面这样
dqn pytorch,强化学习,算法,pytorch,强化学习
dqn pytorch,强化学习,算法,pytorch,强化学习
dqn pytorch,强化学习,算法,pytorch,强化学习

❀Pytorch版本代码

采用Pytorch实现了DQN算法,完成了走迷宫Maze游戏,哈哈哈,这个游戏来自莫烦Python教程,代码嘛是自己修改过哒,代码贴在github上啦

ningmengzhihe/DQN_base: DQN algorithm by Pytorch - a simple maze game https://github.com/ningmengzhihe/DQN_base

(1)环境构建代码maze_env.py


import numpy as np
import time
import sys
if sys.version_info.major == 2:
    import Tkinter as tk
else:
    import tkinter as tk

UNIT = 40   # pixels
MAZE_H = 4  # grid height
MAZE_W = 4  # grid width


class Maze(tk.Tk, object):
    def __init__(self):
        super(Maze, self).__init__()
        self.action_space = ['u', 'd', 'l', 'r']
        self.n_actions = len(self.action_space)
        self.n_features = 2
        self.title('maze')
        self.geometry('{0}x{1}'.format(MAZE_W * UNIT, MAZE_H * UNIT))
        self._build_maze()

    def _build_maze(self):
        self.canvas = tk.Canvas(self, bg='white',
                           height=MAZE_H * UNIT,
                           width=MAZE_W * UNIT)

        # create grids
        for c in range(0, MAZE_W * UNIT, UNIT):
            x0, y0, x1, y1 = c, 0, c, MAZE_H * UNIT
            self.canvas.create_line(x0, y0, x1, y1)
        for r in range(0, MAZE_H * UNIT, UNIT):
            x0, y0, x1, y1 = 0, r, MAZE_W * UNIT, r
            self.canvas.create_line(x0, y0, x1, y1)

        # create origin
        origin = np.array([20, 20])

        # hell
        hell1_center = origin + np.array([UNIT * 2, UNIT])
        self.hell1 = self.canvas.create_rectangle(
            hell1_center[0] - 15, hell1_center[1] - 15,
            hell1_center[0] + 15, hell1_center[1] + 15,
            fill='black')
        # hell
        # hell2_center = origin + np.array([UNIT, UNIT * 2])
        # self.hell2 = self.canvas.create_rectangle(
        #     hell2_center[0] - 15, hell2_center[1] - 15,
        #     hell2_center[0] + 15, hell2_center[1] + 15,
        #     fill='black')

        # create oval
        oval_center = origin + UNIT * 2
        self.oval = self.canvas.create_oval(
            oval_center[0] - 15, oval_center[1] - 15,
            oval_center[0] + 15, oval_center[1] + 15,
            fill='yellow')

        # create red rect
        self.rect = self.canvas.create_rectangle(
            origin[0] - 15, origin[1] - 15,
            origin[0] + 15, origin[1] + 15,
            fill='red')

        # pack all
        self.canvas.pack()

    def reset(self):
        self.update()
        time.sleep(0.1)
        self.canvas.delete(self.rect)
        origin = np.array([20, 20])
        self.rect = self.canvas.create_rectangle(
            origin[0] - 15, origin[1] - 15,
            origin[0] + 15, origin[1] + 15,
            fill='red')
        # return observation
        return (np.array(self.canvas.coords(self.rect)[:2]) - np.array(self.canvas.coords(self.oval)[:2]))/(MAZE_H*UNIT)

    def step(self, action):
        s = self.canvas.coords(self.rect)
        base_action = np.array([0, 0])
        if action == 0:   # up
            if s[1] > UNIT:
                base_action[1] -= UNIT
        elif action == 1:   # down
            if s[1] < (MAZE_H - 1) * UNIT:
                base_action[1] += UNIT
        elif action == 2:   # right
            if s[0] < (MAZE_W - 1) * UNIT:
                base_action[0] += UNIT
        elif action == 3:   # left
            if s[0] > UNIT:
                base_action[0] -= UNIT

        self.canvas.move(self.rect, base_action[0], base_action[1])  # move agent

        next_coords = self.canvas.coords(self.rect)  # next state

        # reward function
        if next_coords == self.canvas.coords(self.oval):
            reward = 1
            done = True
        elif next_coords in [self.canvas.coords(self.hell1)]:
            reward = -1
            done = True
        else:
            reward = 0
            done = False
        s_ = (np.array(next_coords[:2]) - np.array(self.canvas.coords(self.oval)[:2]))/(MAZE_H*UNIT)
        return s_, reward, done

    def render(self):
        # time.sleep(0.01)
        self.update()

(2)DQN算法代码,包括神经网络定义、Q值更新:RL_brain.py

"""
Deep Q Network off-policy
"""
import torch
import torch.nn as nn
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

np.random.seed(42)
torch.manual_seed(2)


class Network(nn.Module):
    """
    Network Structure
    """
    def __init__(self,
                 n_features,
                 n_actions,
                 n_neuron=10
                 ):
        super(Network, self).__init__()
        self.net = nn.Sequential(
            nn.Linear(in_features=n_features, out_features=n_neuron, bias=True),
            nn.Linear(in_features=n_neuron, out_features=n_actions, bias=True),
            nn.ReLU()
        )

    def forward(self, s):
        """

        :param s: s
        :return: q
        """
        q = self.net(s)
        return q


class DeepQNetwork(nn.Module):
    """
    Q Learning Algorithm
    """
    def __init__(self,
                 n_actions,
                 n_features,
                 learning_rate=0.01,
                 reward_decay=0.9,
                 e_greedy=0.9,
                 replace_target_iter=300,
                 memory_size=500,
                 batch_size=32,
                 e_greedy_increment=None):
        super(DeepQNetwork, self).__init__()

        self.n_actions = n_actions
        self.n_features = n_features
        self.lr = learning_rate
        self.gamma = reward_decay
        self.epsilon_max = e_greedy
        self.replace_target_iter = replace_target_iter
        self.memory_size = memory_size
        self.batch_size = batch_size
        self.epsilon_increment = e_greedy_increment
        self.epsilon = 0 if e_greedy_increment is not None else self.epsilon_max

        # total learning step
        self.learn_step_counter = 0

        # initialize zero memory [s, a, r, s_]
        # 这里用pd.DataFrame创建的表格作为memory
        # 表格的行数是memory的大小,也就是transition的个数
        # 表格的列数是transition的长度,一个transition包含[s, a, r, s_],其中a和r分别是一个数字,s和s_的长度分别是n_features
        self.memory = pd.DataFrame(np.zeros((self.memory_size, self.n_features*2+2)))

        # build two network: eval_net and target_net
        self.eval_net = Network(n_features=self.n_features, n_actions=self.n_actions)
        self.target_net = Network(n_features=self.n_features, n_actions=self.n_actions)
        self.loss_function = nn.MSELoss()
        self.optimizer = torch.optim.Adam(self.eval_net.parameters(), lr=self.lr)

        # 记录每一步的误差
        self.cost_his = []


    def store_transition(self, s, a, r, s_):
        if not hasattr(self, 'memory_counter'):
            # hasattr用于判断对象是否包含对应的属性。
            self.memory_counter = 0

        transition = np.hstack((s, [a,r], s_))

        # replace the old memory with new memory
        index = self.memory_counter % self.memory_size
        self.memory.iloc[index, :] = transition

        self.memory_counter += 1

    def choose_action(self, observation):
        observation = observation[np.newaxis, :]

        if np.random.uniform() < self.epsilon:
            # forward feed the observation and get q value for every actions
            s = torch.FloatTensor(observation)
            actions_value = self.eval_net(s)
            action = [np.argmax(actions_value.detach().numpy())][0]
        else:
            action = np.random.randint(0, self.n_actions)
        return action

    def _replace_target_params(self):
        # 复制网络参数
        self.target_net.load_state_dict(self.eval_net.state_dict())

    def learn(self):
        # check to replace target parameters
        if self.learn_step_counter % self.replace_target_iter == 0:
            self._replace_target_params()
            print('\ntarget params replaced\n')

        # sample batch memory from all memory
        batch_memory = self.memory.sample(self.batch_size) \
            if self.memory_counter > self.memory_size \
            else self.memory.iloc[:self.memory_counter].sample(self.batch_size, replace=True)

        # run the nextwork
        s = torch.FloatTensor(batch_memory.iloc[:, :self.n_features].values)
        s_ = torch.FloatTensor(batch_memory.iloc[:, -self.n_features:].values)
        q_eval = self.eval_net(s)
        q_next = self.target_net(s_)

        # change q_target w.r.t q_eval's action
        q_target = q_eval.clone()

        # 更新值
        batch_index = np.arange(self.batch_size, dtype=np.int32)
        eval_act_index = batch_memory.iloc[:, self.n_features].values.astype(int)
        reward = batch_memory.iloc[:, self.n_features + 1].values

        q_target[batch_index, eval_act_index] = torch.FloatTensor(reward) + self.gamma * q_next.max(dim=1).values

        # train eval network
        loss = self.loss_function(q_target, q_eval)
        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()

        self.cost_his.append(loss.detach().numpy())

        # increasing epsilon
        self.epsilon = self.epsilon + self.epsilon_increment if self.epsilon < self.epsilon_max else self.epsilon_max
        self.learn_step_counter += 1

    def plot_cost(self):
        plt.figure()
        plt.plot(np.arange(len(self.cost_his)), self.cost_his)
        plt.show()

(3)每个episode代码:run_this.py

from maze_env import Maze
from RL_brain import DeepQNetwork

def run_maze():
    step = 0  # 为了记录走到第几步,记忆录中积累经验(也就是积累一些transition)之后再开始学习
    for episode in range(200):
        # initial observation
        observation = env.reset()

        while True:
            # refresh env
            env.render()

            # RL choose action based on observation
            action = RL.choose_action(observation)

            # RL take action and get next observation and reward
            observation_, reward, done = env.step(action)

            # !! restore transition
            RL.store_transition(observation, action, reward, observation_)

            # 超过200条transition之后每隔5步学习一次
            if (step > 200) and (step % 5 == 0):
                RL.learn()

            # swap observation
            observation = observation_

            # break while loop when end of this episode
            if done:
                break
            step += 1

    # end of game
    print("game over")
    env.destroy()


if __name__ == "__main__":
    # maze game
    env = Maze()
    RL = DeepQNetwork(env.n_actions, env.n_features,
                      learning_rate=0.01,
                      reward_decay=0.9,
                      e_greedy=0.9,
                      replace_target_iter=200,
                      memory_size=2000)
    env.after(100, run_maze)
    env.mainloop()
    RL.plot_cost()

❀参考资料

https://zhuanlan.zhihu.com/p/614697168
这份参考资料清晰的解释了2个Q值网络,pytorch代码值得参考

https://www.bilibili.com/video/BV13W411Y75P?p=14&vd_source=1565223f5f03f44f5674538ab582448c
莫烦Python在B站上的DQN教程文章来源地址https://www.toymoban.com/news/detail-611924.html

到了这里,关于DQN基本概念和算法流程(附Pytorch代码)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【Pytorch】第 9 章 :Capstone 项目——用 DQN 玩 Flappy Bird

           🔎大家好,我是Sonhhxg_柒,希望你看完之后,能对你有所帮助,不足请指正!共同学习交流🔎 📝个人主页-Sonhhxg_柒的博客_CSDN博客 📃 🎁欢迎各位→点赞👍 + 收藏⭐️ + 留言📝​ 📣系列专栏 - 机器学习【ML】 自然语言处理【NLP】  深度学习【DL】 ​​  🖍

    2024年02月16日
    浏览(45)
  • 【强化学习】值函数算法DQNs详解【Vanilla DQN & Double DQN & Dueling DQN】

    ​ 在 Reinforcement Learning with Code 【Code 1. Tabular Q-learning】中讲解的 Q-learning 算法中,我们以矩阵的方式建立了一张存储每个状态下所有动作 Q Q Q 值的表格。表格中的每一个动作价值 Q ( s , a ) Q(s,a) Q ( s , a ) 表示在状态 s s s 下选择动作然后继续遵循某一策略预期能够得到的期望

    2024年02月13日
    浏览(48)
  • DQN算法详解

    强化学习算法可以分为三大类:value based, policy based 和 actor critic。常见的是以DQN为代表的value based算法,这种算法中只有一个值函数网络,没有policy网络,以及以DDPG,TRPO为代表的actor-critic算法,这种算法中既有值函数网络,又有policy网络。 说到DQN中有值函数网络,这里简单介

    2024年02月12日
    浏览(34)
  • 深度强化学习——DQN算法原理

    一、DQN算法是什么 DQN,即深度Q网络(Deep Q-network),是指基于深度学习的Q-Learing算法。 回顾一下Q-Learing:强化学习——Q-Learning算法原理 Q-Learing算法维护一个Q-table,使用表格存储每个状态s下采取动作a获得的奖励,即状态-价值函数Q(s,a),这种算法存在很大的局限性。在现实

    2024年02月02日
    浏览(54)
  • 深度学习十大算法之深度Q网络(DQN)

    深度Q网络(DQN)是一种结合了深度学习和强化学习的算法,它在近年来成为了人工智能领域的一个热点。DQN首次被引入是在2013年,由DeepMind的研究人员开发。它标志着深度学习技术在解决高维度决策问题上的一大突破。 DQN是一种算法,它使用深度神经网络来逼近最优的Q函数

    2024年04月13日
    浏览(81)
  • 基于深度强化学习(DQN)的迷宫寻路算法

    QLearning方法有着明显的局限性,当状态和动作空间是离散的且维数不高时可使用Q-Table存储每个状态动作的Q值,而当状态和动作时高维连续时,该方法便不太适用。可以将Q-Table的更新问题变成一个函数拟合问题,通过更新参数θ使得Q函数逼近最优Q值。DL是解决参数学习的有效

    2023年04月22日
    浏览(73)
  • DQN(deep Q-network)算法简述

    本文通过整理李宏毅老师的机器学习教程的内容,简要介绍深度强化学习(deep reinforcement learning)中的 DQN(deep Q-network)算法。 李宏毅老师课程的B站链接: 李宏毅, 深度强化学习, Q-learning, basic idea 李宏毅, 深度强化学习, Q-learning, advanced tips 李宏毅, 深度强化学习, Q-learning,

    2023年04月08日
    浏览(34)
  • DQN、Double DQN、Dueling DQN、Per DQN、NoisyDQN 学习笔记

    部分内容与图片摘自:JoyRL 、 EasyRL DQN (Deep Q-Network) 说明 DQN通过深度学习技术处理高维状态空间,它的核心是使用深度神经网络来近似Q值函数。传统Q-learning依赖于一个查找表(Q表)来存储每个状态-动作对的Q值,但这在高维空间中变得不可行。DQN通过训练一个神经网络来学

    2024年01月20日
    浏览(41)
  • Pytorch基本概念和使用方法

    目录 1 Adam及优化器optimizer(Adam、SGD等)是如何选用的? 1)Momentum 2)RMSProp 3)Adam 2 Pytorch的使用以及Pytorch在以后学习工作中的应用场景。 1)Pytorch的使用 2)应用场景 3 不同的数据、数据集加载方式以及加载后各部分的调用处理方式。如DataLoder的使用、datasets内置数据集的使

    2024年02月07日
    浏览(41)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包