Math:P问题(多项式时间内可解决)、NP问题(多项式时间内验证)、NPC问题(可通过一个多项式时间算法转换为NP问题)、NP-Hard问题(两不知)的详解与区别之详细攻略

这篇具有很好参考价值的文章主要介绍了Math:P问题(多项式时间内可解决)、NP问题(多项式时间内验证)、NPC问题(可通过一个多项式时间算法转换为NP问题)、NP-Hard问题(两不知)的详解与区别之详细攻略。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Math:P问题(多项式时间内可解决)、NP问题(多项式时间内验证)、NPC问题(可通过一个多项式时间算法转换为NP问题)、NP-Hard问题(两不知)的详解与区别之详细攻略

导读:昨天与圈内几位数学界的大佬,深度探讨了一下P问题、NP问题、NPC问题、NP-Hard问题之间的联系和区别,聊的很嗨,主要是来比较复杂问题的困难程度,探究是否存在高效算法解决NP问题的可能性,并为复杂问题提供高效近似算法。进一步,帮助我们理解问题的可解性和难解性。
研究P问题和NP问题可以帮助我们了解在可接受的时间内是否存在高效算法来解决某个问题。而NPC问题和NP-Hard问题的研究则对于确定问题的边界和复杂性提供了重要线索。这些理论概念在算法设计、计算复杂性理论以及实际问题的解决中具有广泛的应用
欢大家留言评论,参与探讨与分享……

目录

P问题(多项式时间内可解决)、NP问题(多项式时间内验证)、NPC问题(可通过一个多项式时间算法转换为NP问题)、NP-Hard问题(两不知)的详解与区别


P问题(多项式时间内可解决)、NP问题(多项式时间内验证)、NPC问题(可通过一个多项式时间算法转换为NP问题)、NP-Hard问题(两不知)的详解与区别

问题复杂度

多项式级的复杂度:一种是O(1),O(log(n)),O(na)等,我们把它叫做多项式级的复杂度,因为它的规模n出现在底数的位置;

非多项式级复杂度:另一种是O(an)和O(n!)型复杂度,它是非多项式级的,其复杂度计算机往往不能承受。

当我们在解决一个问题时,我们选择的算法通常都需要是多项式级的复杂度,非多项式级的复杂度需要的时间太多,往往会超时,除非是数据规模非常小。

UDP问题

会不会所有的问题都可以找到复杂度为多项式级的算法呢?很遗憾,答案是否定的。有些问题甚至根本不可能找到一个正确的算法来,这称之为“不可解问题” (Undecidable Decision Problem)。

P类问题

P类问题:P代表可在多项式时间内解决的问题。这些问题的解决方案可以在多项式时间内找到。也就是说,存在一个有效的算法,其运行时间与问题的规模呈多项式关系。

所有可以在多项式时间内求解判定问题构成P类问题。其中判定问题:判断是否有一种能够解决某一类问题的能行算法的研究课题。

如果一个问题可以找到一个能在多项式的时间里解决它的算法,那么这个问题就属于P问题(Polynomial)。

哪些问题是P类问题呢?通常NOI和NOIP不会出不属于P类问题的题目。我们常见到的一些信息奥赛的题目都是P问题。道理很简单,一个用穷举换来的非多项式级时间的超时程序不会涵盖任何有价值的算法。

例如,排序和搜索算法都属于P问题;

奥赛的题目都是P问题;

NP类问题

NP类问题(Non-deterministic Polynomial):NP代表非确定性多项式(Nondeterministic Polynomial)。这类问题的解决方案可以在多项式时间内验证,但是找出解决方案的时间复杂度可能是指数级的。

。也就是说,如果我们已经有了一个解决方案,我们可以在多项式时间内验证它的正确性。然而,尚未找到多项式时间复杂度的解决方案。经典的例子是旅行商问题(Traveling Salesman Problem),即找到一条访问所有城市的最短路径。

所有的非确定性多项式时间可解的判定问题构成NP类问题。其中非确定性算法将问题分解成猜测验证两个阶段。算法的猜测阶段是非确定性的,算法的验证阶段是确定性的,它验证猜测阶段给出解的正确性。

NP问题容易理解错误。在这里强调,NP问题不是非P类问题。NP问题是指

>> 可以在多项式的时间里验证一个解的问题。

>> 可以在多项式的时间里猜出一个解的问题。

找一个解很困难,但验证一个解很容易。验证一个解只需要O(n)的时间复杂度,也就是说我可以花O(n)的时间把我猜的路径的长度加出来。

例如旅行商问题、求解线性方程组。

NP=P?可能是这个世纪最重要的数学问题

NPC问题

NPC问题(Non-deterministic Polynomial Complete):如果任何一个NP问题都能通过一个多项式时间算法转换为某个NP问题,那么这个NP问题就称为NPC问题。

NPC代表非确定性多项式完全(Nondeterministic Polynomial Complete)。这是一类特殊的NP问题,被认为是NP问题中最难的问题之一。如果某个问题是NPC问题,那么它满足两个条件:

首先,它是一个NP问题;

其次,任何其他的NP问题都可以通过多项式时间归约(reduction)转换为该问题。

简而言之,NPC问题是NP问题的最困难的子集。著名的例子包括旅行商问题、背包问题(Knapsack Problem)和布尔可满足性问题(Boolean Satisfiability Problem)。

NP中的某些问题的复杂性与整个类的复杂性相关联,这些问题中任何一个如果存在多项式时间的算法,那么所有NP问题都是多项式时间可解的,这些问题被称为NP-完全问题(NPC问题)。

著名的例子包括0-1背包问题、布尔可满足性问题

NP-Hard

NP-Hard问题是一类至少与NPC问题一样困难的问题。它们可以是任何问题,即使没有被证明为NP问题。NP-Hard问题不一定要求在多项式时间内验证解决方案,也没有要求它们本身是NP问题。简单来说,NP-Hard问题是困难问题的一类,并且可以用多项式时间归约转换为任何其他问题

两不知:这类问题目前不知道是否可以在多项式时间内解决,也不知道解的验证是否可以在多项式时间内完成。

图的着色问题文章来源地址https://www.toymoban.com/news/detail-612089.html

到了这里,关于Math:P问题(多项式时间内可解决)、NP问题(多项式时间内验证)、NPC问题(可通过一个多项式时间算法转换为NP问题)、NP-Hard问题(两不知)的详解与区别之详细攻略的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 逻辑回归与多项式特征:解密分类问题的强大工具

    在机器学习领域,逻辑回归是一种常用的分类算法,它可以用于解决诸如垃圾邮件过滤、疾病预测和客户流失分析等各种分类问题。然而,有时候简单的线性逻辑回归模型无法捕捉到数据中的复杂关系。为了更好地处理这些情况,我们可以引入多项式特征,从而提高模型的表

    2024年02月08日
    浏览(45)
  • 基于Matlab的插值问题(Lagrange插值法、三次插值多项式)

    要求 1、 利用Lagrange插值公式 L n ( x ) = ∑ k = 0 n ( ∏ i = 0 , i ≠ k n x − x i x k − x i ) y k {L_n}(x) = sumlimits_{k = 0}^n {left( {prodlimits_{i = 0,i ne k}^n {frac{{x - {x_i}}}{{{x_k} - {x_i}}}} } right)} {y_k} L n ​ ( x ) = k = 0 ∑ n ​ ( i = 0 , i  = k ∏ n ​ x k ​ − x i ​ x − x i ​ ​ ) y k ​ 编写出

    2024年02月07日
    浏览(48)
  • P4725 【模板】多项式对数函数(多项式 ln)

    洛谷P4725 【模板】多项式对数函数(多项式 ln) 题目大意 给你一个 n − 1 n-1 n − 1 次多项式 A ( x ) A(x) A ( x ) ,求一个   m o d   x n bmod x^n mod x n 下的多项式 B ( x ) B(x) B ( x ) ,满足 B ( x ) ≡ ln ⁡ A ( x ) B(x)equiv ln A(x) B ( x ) ≡ ln A ( x ) 。 在   m o d   998244353 bmod 998244353 mo

    2024年02月03日
    浏览(56)
  • 用链表表示多项式,并实现多项式的加法运算

    输入格式: 输入在第一行给出第一个多项式POLYA的系数和指数,并以0,0 结束第一个多项式的输入;在第二行出第一个多项式POLYB的系数和指数,并以0,0 结束第一个多项式的输入。 输出格式: 对每一组输入,在一行中输出POLYA+POLYB和多项式的系数和指数。 输入样例: 输出样例: 本

    2024年02月07日
    浏览(71)
  • 【C 数据结构】 用单链表存储一元多项式,并实现两个多项式相加运算。

    本次代码纯c语言,可以支持输入两个多项式的项式、系数、指数。 实验目的: 1 掌握单链表的基本工作原理; 2 实现链式存储下的两个多项式的相加。 实验步骤 1 定义链式存储的数据结构 2 完成多项式的初始化,即给多项式赋初值 3 完成多项式的输出 4 实现多项式的相加及结

    2024年02月06日
    浏览(48)
  • 基于MATLAB的矩阵性质:行列式,秩,迹,范数,特征多项式与矩阵多项式

    本节主要讨论矩阵的基本概念和性质,结合MATLAB的基础代码,适合新手。 矩阵的 行列式 的数学定义如下: MATLAB调用的格式如下: 求以下矩阵的行列式: 解: MATLAB代码如下: 运行结果: ans =    5.1337e-13 利用解析解的方法计算20✖️20的Hilbert矩阵的行列式,并分析其代码运

    2024年02月05日
    浏览(64)
  • 牛顿插值法、拉格朗日插值法、三次插值、牛顿插值多项式、拉格朗日插值多项式

    两点式线性插值 调用Matlab库函数 拉格朗日二次插值: 牛顿二次插值 结果分析:通过对比不同插值方法,可以看到在一定范围内(高次会出现龙格现象),插值次数越高,截断误差越小(插值结果越接近于真实函数值);同时,对于相同次数的插值,由于不同的插值方法它们

    2024年02月11日
    浏览(48)
  • 多项式乘法逆

    前置知识:NTT学习笔记(快速数论变换) 情景代入 洛谷P4238 【模板】多项式乘法逆 给定一个多项式 f ( x ) f(x) f ( x ) ,求 g ( x ) g(x) g ( x ) ,满足 f ( x ) × g ( x ) ≡ 1 ( m o d x n ) f(x)times g(x)equiv 1pmod{x^n} f ( x ) × g ( x ) ≡ 1 ( mod x n ) 。系数对 998244353 998244353 998244353 取模。 1 ≤

    2024年02月02日
    浏览(47)
  • Jacobi正交多项式

    注:本文的内容主要根据文末中的参考文档[1,2,3]中的内容进行整理完成。 设 I = [ − 1 , 1 ] I=[-1,1] I = [ − 1 , 1 ] 是实轴上的标准区间,定义在 I I I 上的正函数: ω α , β ( x ) = ( 1 − x ) α ( 1 + x ) β , α − 1 , β − 1 omega_{alpha,beta}(x)=(1-x)^{alpha}(1+x)^{beta}, alpha-1,beta-1 ω α , β

    2024年02月13日
    浏览(44)
  • 多项式承诺:KZG

    参考文献: Merkle, R. ”Protocols for Public Key Cryptosystems.” Proc. 1980 Symp. on Security and Privacy, IEEE Computer Society (April 1980), 122-133. Benaloh J, Mare M. One-way accumulators: A decentralized alternative to digital signatures[C]//Workshop on the Theory and Application of of Cryptographic Techniques. Springer, Berlin, Heidelberg, 1993

    2024年02月04日
    浏览(56)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包