【机器学习】支持向量机SVM入门

这篇具有很好参考价值的文章主要介绍了【机器学习】支持向量机SVM入门。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

优化目标

相较于之前学习的线性回归和神经网络,支持向量机(Supprot Vector Machine,简称SVM)在拟合复杂的非线性方程的时候拥有更出色的能力,该算法也是十分经典的算法之一。接下来我们需要学习这种算法

首先我们回顾逻辑回归中的经典假设函数,如下图:
【机器学习】支持向量机SVM入门,机器学习,支持向量机,机器学习,算法

对于任意一个实例 ( x , y ) (x,y) (x,y),当y=1的时候,我们希望 h θ ( x ) ≈ 1 h_\theta(x)\approx1 hθ(x)1,也就是 θ T x > > 0 \theta^Tx>>0 θTx>>0;当y=0的时候,我们希望 h t h e t a ( x ) ≈ 0 h_theta(x)\approx0 htheta(x)0,也就是 θ T x < < 0 \theta^Tx<<0 θTx<<0。在这种情况下我们才认为算法预测正确了

在之前的学习中,我们了解到Logistics函数的方程如下:

逻辑回归
m i n θ   1 m [ ∑ i = 1 m y ( i ) ( − l o g   h θ ( x ( i ) ) ) + ( 1 − y ( i ) ) ( − l o g ( 1 − h θ ( x ( i ) ) ) ] + λ 2 m ∑ j = 1 λ θ j 2 \mathop{min}\limits_{\theta } \:\frac{1}{m} \left [ \sum_{i=1}^{m}y^{(i)}\left ( -log\:h_\theta (x^{( i)}) \right ) +(1-y^{(i)})\left ( -log(1-h_\theta (x^{(i)}) \right ) \right ]+\frac{\lambda }{2m}\sum_{j=1}^{\lambda }\theta _j^2 θminm1[i=1my(i)(loghθ(x(i)))+(1y(i))(log(1hθ(x(i)))]+2mλj=1λθj2

很明显,当y=1但是 h θ ( x ) ≈ 0 h_\theta(x)\approx0 hθ(x)0,或者y=0但是 h θ ( x ) ≈ 1 h_\theta(x)\approx1 hθ(x)1,因为这意味着逻辑回归的假设函数做出了错误的假设,代价函数应该狠狠地惩罚它

对比原来的逻辑回归,SVM的公式如下:
m i n θ C ∑ i = 1 m [ y ( i ) c o s t 1 ( θ T x ( i ) ) + ( 1 − y ( 1 ) ) c o s t 0 ( θ T x ( i ) ) ] + 1 2 ∑ j = 1 n θ j 1 \mathop{min}\limits_{\theta } C\sum_{i=1 }^{m}\left [ y^{(i)}cost_1(\theta ^Tx^{(i)})+(1-y^{(1)})cost_0(\theta ^Tx^{(i)}) \right ] +\frac{1}{2}\sum_{j=1}^{n}\theta _j^1 θminCi=1m[y(i)cost1(θTx(i))+(1y(1))cost0(θTx(i))]+21j=1nθj1
很明显,前面的中括号是代价函数项,后面的是正则化项,在SVM中,使用参数 C C C来控制代价函数和正则化项之间的权重。
其中 c o s t 1 ( z ) cost_1(z) cost1(z)的图象是
【机器学习】支持向量机SVM入门,机器学习,支持向量机,机器学习,算法
c o s t 2 ( z ) cost_2(z) cost2(z)的图形是
【机器学习】支持向量机SVM入门,机器学习,支持向量机,机器学习,算法

这意味着当y=1的时候,我们会希望 θ   x T ≥ 1 \theta\:x^T\geq1 θxT1,才能使代价函数cost较小。而当y=0的时候,我们会希望 θ   x ≤ − 1 \theta\:x\leq-1 θx1。这样子我们在SVM的(-1,1)中建立了一个安全间距

大间距问题

对于一些间距较大的数据集,存在着多种划分方式,比如下面这种划分方式,虽然满足了条件,但是它的鲁棒性和泛化能力并出色
【机器学习】支持向量机SVM入门,机器学习,支持向量机,机器学习,算法
而下图这种划分方式显然比上面的好:划分边界和被划分的两个点集的距离是接近的,这个距离被称之为间距。显然,上图的划分方法间距就十分小,而下图的划分方式间距就比较大。
【机器学习】支持向量机SVM入门,机器学习,支持向量机,机器学习,算法
【机器学习】支持向量机SVM入门,机器学习,支持向量机,机器学习,算法

对于这些间距较大的数据集的划分,我们称之为大间距问题,而SVM可以很自然地处理大间距问题,将数据集划分成上图所示的样子,这使得SVM有优秀的鲁棒性,因此SVM有时候又称为大间距分类器。这也说明了SVM的划分方式:SVM会将点以最大间距进行分类。

注意:SVM在其参数C设置得十分大的时候会倾向于保持大间距,但是这会使得算法对异常点十分敏感

核函数

【机器学习】支持向量机SVM入门,机器学习,支持向量机,机器学习,算法 注:$||w||$表示一个向量的长度

假设在图上有三个点,分别是 l ( 1 ) l^{(1)} l(1), l ( 2 ) l^{(2)} l(2) l ( 3 ) l^{(3)} l(3),如下图所示
【机器学习】支持向量机SVM入门,机器学习,支持向量机,机器学习,算法
我们需要计算某个点x和着三个点的相似度,那么计算方法如下:
f 1 = s i m i l a r i t y ( x , l ( 1 ) ) = e x p ( − ∣ ∣ x − l ( 1 ) ∣ ∣ 2 2 σ 2 ) f_1=similarity(x,l^{(1)})=exp\left (-\frac{||x-l^{(1)}||^2}{2\sigma ^2}\right ) f1=similarity(x,l(1))=exp(2σ2∣∣xl(1)2)
f 2 = s i m i l a r i t y ( x , l ( 2 ) ) = e x p ( − ∣ ∣ x − l ( 2 ) ∣ ∣ 2 2 σ 2 ) f_2=similarity(x,l^{(2)})=exp\left (-\frac{||x-l^{(2)}||^2}{2\sigma ^2}\right ) f2=similarity(x,l(2))=exp(2σ2∣∣xl(2)2)
f 3 = s i m i l a r i t y ( x , l ( 3 ) ) = e x p ( − ∣ ∣ x − l ( 3 ) ∣ ∣ 2 2 σ 2 ) f_3=similarity(x,l^{(3)})=exp\left (-\frac{||x-l^{(3)}||^2}{2\sigma ^2}\right ) f3=similarity(x,l(3))=exp(2σ2∣∣xl(3)2)
其中 ∣ ∣ x − l ( i ) ∣ ∣ 2 ||x-l^{(i)}||^2 ∣∣xl(i)2是x到 l ( 1 ) l^{(1)} l(1)的欧氏距离

上面所示的 s i m i l a r i t y similarity similarity函数是其中一种核函数,被称之为高斯核函数,可以写作 k ( x , l ( i ) ) = e x p ( − ∣ ∣ x − l ( i ) ∣ ∣ 2 2 σ 2 ) k(x,l^{(i)})=exp\left (-\frac{||x-l^{(i)}||^2}{2\sigma ^2}\right ) k(x,l(i))=exp(2σ2∣∣xl(i)2)
分析这个核函数,当 x ≈ l ( 1 ) x\approx l^{(1)} xl(1)的时候, ∣ ∣ x − l ( i ) ∣ ∣ 2 ≈ 0 ||x-l^{(i)}||^2\approx0 ∣∣xl(i)20,那么 k ( x , l ( 1 ) ) ≈ e x p ( 0 ) = 1 k(x,l^{(1)})\approx exp(0)=1 k(x,l(1))exp(0)=1;当x和 l ( i ) l^{(i)} l(i)距离很远的时候,由于其欧氏几何距离变得很大,那么 k ( x , l ( i ) ) = e x p ( − ∣ ∣ x − l ( i ) ∣ ∣ 2 2 σ 2 ) = e x p ( − L a r g e N u m b e r 2 σ 2 ) ≈ 0 k(x,l^{(i)})=exp\left (-\frac{||x-l^{(i)}||^2}{2\sigma ^2}\right )=exp\left (-\frac{Large Number}{2\sigma ^2}\right )\approx0 k(x,l(i))=exp(2σ2∣∣xl(i)2)=exp(2σ2LargeNumber)0

接下来我们聚焦于参数 σ \sigma σ对整个核函数的影响,假设 l ( 1 ) l^{(1)} l(1)位于[3,5]
【机器学习】支持向量机SVM入门,机器学习,支持向量机,机器学习,算法
可以看到,当 σ \sigma σ比较小的时候,其图像变化的幅度更大;反之,其图像则比较平缓

回到最初的图像,如果我们希望如果一个实例x靠近 l ( 1 ) l^{(1)} l(1)或者 l ( 2 ) l^{(2)} l(2)的时候,我们就预测其y=1(比如当一张图片上具有某些猫类的特征的时候,我们希望机器学习算法将其分类为猫)。那具体应该怎么做呢?
【机器学习】支持向量机SVM入门,机器学习,支持向量机,机器学习,算法
设定一个假设函数 f ( x ) = θ 0 + θ 1 f 1 + θ 2 f 2 + θ 3 f 3 f(x)=\theta_0+\theta_1f_1+\theta_2f_2+\theta_3f_3 f(x)=θ0+θ1f1+θ2f2+θ3f3,其中 f i = k ( x , l ( i ) ) f_i=k(x,l^{(i)}) fi=k(x,l(i)) 当 当 f(x)\geq0 的时候,我们预测 y = 1 。并且令 的时候,我们预测y=1。并且令 的时候,我们预测y=1。并且令\theta_0-0.5, \theta_1=1,\theta_2=1,\theta_3=0$,那么会怎么样呢?

当x靠近 l ( 1 ) l^{(1)} l(1)的时候, f ( x ) = − 0.5 + 1 + 0 + 0 = 0.5 f(x)=-0.5+1+0+0=0.5 f(x)=0.5+1+0+0=0.5,因此我们预测其y=1;而当x靠近 l ( 2 ) l^{(2)} l(2)的时候, f ( x ) = − 0.5 + 0 + 1 + 0 = 0.5 f(x)=-0.5+0+1+0=0.5 f(x)=0.5+0+1+0=0.5,因此我们预测其y=1

神奇的来了,我们实际上可以画出一个非线性的边界(红线),在这个边界内 f ( x ) ≥ 0 f(x)\geq0 f(x)0,也就是意味着算法认为y=1
【机器学习】支持向量机SVM入门,机器学习,支持向量机,机器学习,算法

总而言之,通过高斯核函数可以衡量x到任意点的距离远近,而通过假设函数f(x)将若干个高斯核函数的计算集合在一块,规划出了一个非线性的边界。

使用SVM

现在已经很少人手搓SVM的 θ \theta θl了,正如很少人手搓一个数的平方根一样。但是在使用SVM的时候还是需要决定几个关键的参数。比如:

  • 选择需要使用的参数C
  • 选择SVM使用何种内核

比如不使用任何内核的SVM,称之为线性核函数。当你的实例拥有大量特征,但是训练集数量却不多的时候,可以使用线性SVM核函数来避免过拟合(此种情况也适合使用我们之前说的线性回归法)

另外一个策略是使用高斯核函数,上面已经介绍过了,高斯核函数如下:
f i = e x p ( − ∣ ∣ x − l ( i ) ∣ ∣ σ 2 ) , w h e r e    l ( i ) = x ( i ) f_i=exp(-\frac{||x-l^{(i)}||}{\sigma ^2} ),where\:\: l^{(i)}=x^{(i)} fi=exp(σ2∣∣xl(i)∣∣),wherel(i)=x(i)这种情况下我们需要对参数 σ \sigma σ进行选择,如果 σ \sigma σ过小,那么得到一个高方差,低偏差的训练器;反之则是一个高偏差,低方差的训练器。当你的数据集数量很大,但是单个数据所拥有的特征量很少的时候,使用高斯核函数是一个不错的选择,因为它可以拟合出相当复杂的非线性决策边界

注意:使用高斯核函数之前,请对特征向量进行归一化,否则会导致在运算中各个特征向量权重不一致

除此之外,还有一些其他的核函数,此处只做简单介绍:
多项式核函数: k e r n a l ( x , l ) = ( x T l ) 2 kernal(x,l)=(x^Tl)^2 kernal(x,l)=(xTl)2x和l越靠近其内积越大
字符串核函数:用于处理文本的核函数
直方核函数

无监督学习

在无监督学习中,数据集不会含有对数据的标记,只包含数据的特征,也就是如下图:
【机器学习】支持向量机SVM入门,机器学习,支持向量机,机器学习,算法
我们可以看到Training Set中已经没有了 y y y,图上的点也没有了标记。而无监督算法的任务就是,找出这些点之间隐含的关系,比如说将上面的点集根据他们之间的距离分类为两个不同的集合。K-Means则是最广泛运用的聚类算法之一,接下来我们将会重点介绍它。

K-Means算法

以下图为例子:
【机器学习】支持向量机SVM入门,机器学习,支持向量机,机器学习,算法

假设我们想要将图上数据分类为两个簇,那么 我们首先要随机选取两个点作为聚类中心(一红一蓝),如下图所示:
【机器学习】支持向量机SVM入门,机器学习,支持向量机,机器学习,算法
接下来它们会重复做两件事:

  1. 簇分配
  2. 移动聚类中心

首先第一步是将各个点分配给簇。对于任意一个点,检查两个聚类中心和该点的距离,并且将点分配给距离较短的簇,分配的结果如下所示

【机器学习】支持向量机SVM入门,机器学习,支持向量机,机器学习,算法

接下来则是移动聚类中心,对于红聚类中心,我们计算所有红色点的横坐标平均值x1和纵坐标平均值y1,并且将红聚类中心移动到 ( x 1 , y 1 ) (x_1,y_1) (x1,y1)处,对蓝聚类中心也进行同样的处理,可得到如下效果:

【机器学习】支持向量机SVM入门,机器学习,支持向量机,机器学习,算法

重复上述步骤若干次,会得到如下结果
【机器学习】支持向量机SVM入门,机器学习,支持向量机,机器学习,算法

此时所有数据都被分类完毕,而且再继续进行迭代,聚类中心也不会发生移动,此时我们认为K-Means已经聚合了。

接下来我们总结一下更加普遍的K-Means算法的执行流程:
输入:

  • 整数参数K:表示需要分为K个簇
  • 训练数据集 x ( 1 ) , x ( 2 ) , x ( 3 ) . . . x ( m ) , {x^{(1)},x^{(2)},x^{(3)}...x^{(m)},} x(1),x(2),x(3)...x(m),
  1. 随机初始化K个聚类中心 μ 1 , μ 2 . . . μ K \mu_1,\mu_2...\mu_K μ1,μ2...μK
  2. 重复迭代如下步骤:
    • 对于 x ( i ) ,   i ∈ ( 1 , m ) x^{(i)},\:i\in(1,m) x(i),i(1,m),求离 x ( i ) x^{(i)} x(i)最近的聚类中心 μ ( j ) \mu^{(j)} μ(j),并且将点 x ( i ) x^{(i)} x(i)归为簇 c ( j ) c^{(j)} c(j)
    • 对于 μ ( k ) ,   k ∈ ( 1 , K ) \mu^{(k)},\:k\in(1,K) μ(k),k(1,K),求簇 c ( k ) c^{(k)} c(k)中所有点的均值,并且将 μ ( k ) \mu^{(k)} μ(k)移动到该点

有意思的是,哪怕某个数据集中的数据没有明显的边界,聚类算法依旧能进行一定的划分,比如对于衣服尺寸和身高的数据集
【机器学习】支持向量机SVM入门,机器学习,支持向量机,机器学习,算法

K-Means的优化目标函数

优化目标函数能够确保K-Means算法最终得到的结果最佳,确保算法运行正确,也可以用于帮助K-Means避免局部最优解,开始之前,我们先规定几个符号:

  • c ( i ) c^{(i)} c(i):表示实例 x ( i ) x^{(i)} x(i)所属的簇
  • μ ( k ) \mu^{(k)} μ(k):表示第k个簇的聚类中心
  • μ c ( i ) \mu_c^{(i)} μc(i):表示实例 x ( i ) x^{(i)} x(i)所属的聚类中心

那么其优化目标函数为:
J ( c ( 1 ) . . . c ( m ) , μ 1 . . . μ k ) = 1 m ∑ i = 1 m ∣ ∣ x ( i ) − μ c ( i ) ∣ ∣ 2 J(c^{(1)}...c^{(m)},\mu_1...\mu_k)=\frac{1}{m}\sum_{i=1}^{m} ||x^{(i)}-\mu_c^{(i)}||^2 J(c(1)...c(m),μ1...μk)=m1i=1m∣∣x(i)μc(i)2
式子后面的 ∣ ∣ x ( i ) − μ c ( i ) ∣ ∣ 2 ||x^{(i)}-\mu_c^{(i)}||^2 ∣∣x(i)μc(i)2表示的是实例 x ( i ) x^{(i)} x(i)到其所属的簇的聚类中心的距离的平方
而我们需要做的是改变 c ( 1 ) . . . c ( m ) c^{(1)}...c^{(m)} c(1)...c(m) μ 1 . . . μ k \mu_1...\mu_k μ1...μk的值,使得 J ( c ( 1 ) . . . c ( m ) , μ 1 . . . μ k ) J(c^{(1)}...c^{(m)},\mu_1...\mu_k) J(c(1)...c(m),μ1...μk)最小

随机初始化

在初始化聚类中心的时候,上文只提到了随机选取若干个点作为聚类中心文章来源地址https://www.toymoban.com/news/detail-612891.html

到了这里,关于【机器学习】支持向量机SVM入门的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 机器学习(七):梯度下降解决分类问题——perceptron感知机算法与SVM支持向量机算法进行二维点分类

    实验2 感知机算法与支持向量机算法 一、预备知识 1.感知机算法 二、实验目的 掌握感知机算法的原理及设计; 掌握利用感知机算法解决分类问题。 三、实验内容 设计感知机算法求解, 设计SVM算法求解(可调用函数库),请找出支持向量和决策超平面。 四、操作方法和实验

    2023年04月26日
    浏览(90)
  • SVM(支持向量机)-机器学习

    支持向量机(Support Vector Machine,SVM) 是一种用于分类和回归分析的监督学习算法 。它属于机器学习中的一类强大而灵活的模型,广泛应用于模式识别、图像分类、自然语言处理等领域。 基本原理: SVM的基本原理是通过找到能够有效分隔不同类别的超平面来进行分类。在二维

    2024年02月03日
    浏览(52)
  • 机器学习-支持向量机SVM

    在本练习中,我们将使用支持向量机(SVM)来构建垃圾邮件分类器。 我们将从一些简单的2D数据集开始使用SVM来查看它们的工作原理。 然后,我们将对一组原始电子邮件进行一些预处理工作,并使用SVM在处理的电子邮件上构建分类器,以确定它们是否为垃圾邮件。 我们要做

    2024年02月12日
    浏览(55)
  • 机器学习——支持向量机SVM

    支持向量机(SVM)是一种二类分类模型,其基本模型是在特征空间上找到最佳的分离超平面使得训练集上正负样本间隔最大,间隔最大使它有别于感知机,支持向量机也可通过核技巧使它成为非线性分类器。支持向量机的学习策略是间隔最大化,可将其转化为一个求解凸二次

    2024年01月17日
    浏览(57)
  • 【机器学习】SVM支持向量机模型

     本站原创文章,转载请说明来自 《老饼讲解-机器学习》 ml.bbbdata.com 目录 一. SVM的目标和思想    1.1 SVM硬间隔模型的原始目的 1.2 SVM的直接目标 1.3 什么是支持向量  二. SVM的支持平面的表示方式 2.1 支持面表示方式的初步思路 2.2 初步思路的缺陷与改进 2.3 支持面的最终表示

    2023年04月23日
    浏览(205)
  • 机器学习(六)支持向量机(SVM)

    目录 1.间隔与支持向量 1.1线性可分 1.2支持向量 1.3 最大间隔超平面 2.对偶问题 2.1拉格朗日乘子法 2.2 SMO算法 2.3SMO算法代码实现 3.核函数 4. SVM实例(手写体数字识别) 5.实验总结 支持向量机(SVM) 是有监督学习中最有影响力的机器学习算法之一,一般用于解决二分类问题(

    2024年02月09日
    浏览(56)
  • 机器学习:基于支持向量机(SVM)进行人脸识别预测

    作者:i阿极 作者简介:Python领域新星作者、多项比赛获奖者:博主个人首页 😊😊😊如果觉得文章不错或能帮助到你学习,可以点赞👍收藏📁评论📒+关注哦!👍👍👍 📜📜📜如果有小伙伴需要数据集和学习交流,文章下方有交流学习区!一起学习进步!💪 专栏案例:

    2024年01月23日
    浏览(49)
  • 第29步 机器学习分类实战:支持向量机(SVM)建模

    支持向量机(SVM)建模。 先复习一下参数(传送门),需要调整的参数有: ① kernel:{‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’, ‘precomputed’},默认为’rbf’。使用的核函数,必须是“linear”,“poly”,“rbf”,“sigmoid”,“precomputed”或者“callable”中的一个。 ② c:浮点

    2024年02月02日
    浏览(65)
  • 机器学习实战:Python基于支持向量机SVM-RFE进行分类预测(三)

    1.1 支持向量机的介绍 支持向量机( Support Vector Machine,SVM )是一种监督学习的分类算法。它的基本思想是找到一个能够最好地将不同类别的数据分开的超平面,同时最大化分类器的边际(margin)。SVM的训练目标是最大化间隔(margin),即支持向量到超平面的距离。 具体地,

    2024年02月05日
    浏览(63)
  • 传统机器学习(七)支持向量机(1)超平面、SVM硬间隔、软间隔模型和损失函数

    1.1.1 超平面公式 我们对“平面”概念的理解,一般是定义在三维空间中的,如下: 假设M和M0为平面上的两点,n为该平面的法向量,那么,通过下图可以容易推导出三维空间中的平面方程: A x + B y + C z + D = 0 Ax + By+Cz+D=0 A x + B y + C z + D = 0 我们把A、B、C写作w,把x、y、z写作x,

    2023年04月27日
    浏览(60)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包