分类目录:《大模型从入门到应用》总目录
LangChain系列文章:
- 基础知识
- 快速入门
- 安装与环境配置
- 链(Chains)、代理(Agent:)和记忆(Memory)
- 快速开发聊天模型
- 模型(Models)
- 基础知识
- 大型语言模型(LLMs)
- 基础知识
- LLM的异步API、自定义LLM包装器、虚假LLM和人类输入LLM(Human Input LLM)
- 缓存LLM的调用结果
- 加载与保存LLM类、流式传输LLM与Chat Model响应和跟踪tokens使用情况
- 聊天模型(Chat Models)
- 基础知识
- 使用少量示例和响应流式传输
- 文本嵌入模型
- Aleph Alpha、Amazon Bedrock、Azure OpenAI、Cohere等
- Embaas、Fake Embeddings、Google Vertex AI PaLM等
- 提示(Prompts)
- 基础知识
- 提示模板
- 基础知识
- 连接到特征存储
- 创建自定义提示模板和含有Few-Shot示例的提示模板
- 部分填充的提示模板和提示合成
- 序列化提示信息
- 示例选择器(Example Selectors)
- 输出解析器(Output Parsers)
- 记忆(Memory)
- 基础知识
- 记忆的类型
- 会话缓存记忆、会话缓存窗口记忆和实体记忆
- 对话知识图谱记忆、对话摘要记忆和会话摘要缓冲记忆
- 对话令牌缓冲存储器和基于向量存储的记忆
- 将记忆添加到LangChain组件中
- 自定义对话记忆与自定义记忆类
- 聊天消息记录
- 记忆的存储与应用
- 索引(Indexes)
- 基础知识
- 文档加载器(Document Loaders)
- 文本分割器(Text Splitters)
- 向量存储器(Vectorstores)
- 检索器(Retrievers)
- 链(Chains)
- 基础知识
- 通用功能
- 自定义Chain和Chain的异步API
- LLMChain和RouterChain
- SequentialChain和TransformationChain
- 链的保存(序列化)与加载(反序列化)
- 链与索引
- 文档分析和基于文档的聊天
- 问答的基础知识
- 图问答(Graph QA)和带来源的问答(Q&A with Sources)
- 检索式问答
- 文本摘要(Summarization)、HyDE和向量数据库的文本生成
- 代理(Agents)
- 基础知识
- 代理类型
- 自定义代理(Custom Agent)
- 自定义MRKL代理
- 带有ChatModel的LLM聊天自定义代理和自定义多操作代理(Custom MultiAction Agent)
- 工具
- 基础知识
- 自定义工具(Custom Tools)
- 多输入工具和工具输入模式
- 人工确认工具验证和Tools作为OpenAI函数
- 工具包(Toolkit)
- 代理执行器(Agent Executor)
- 结合使用Agent和VectorStore
- 使用Agents的异步API和创建ChatGPT克隆
- 处理解析错误、访问中间步骤和限制最大迭代次数
- 为代理程序设置超时时间和限制最大迭代次数和为代理程序和其工具添加共享内存
- 计划与执行
- 回调函数(Callbacks)
模型编程的新方法是使用提示(Prompts)。提示指的是模型的输入。这个输入通常由多个组件构成。PromptTemplate
负责构建这个输入,LangChain提供了多个类和函数,使得构建和处理提示变得简单。《自然语言处理从入门到应用——LangChain:提示(Prompts)》系列文章包含一下几个部分:
- LLM Prompt模板 :揭示如何使用
PromptTemplate
来提示语言模型 - Chat Prompt模板 :揭示如何使用
PromptTemplate
来提示对话模型 - 示例选择器 :在提示中包含示例往往很有用,这些示例可以根据需要进行动态选择
- 输出解析器 :析语言模型和对话模型的输出文本。在很多时候,我们可能希望获得更结构化的信息,这就是输出解析器发挥作用的地方。
- 输出解析器:指示模型应如何格式化输出, 将输出解析为所需的格式,也包括必要时进行重试。
提示是传递给语言模型的值,这个值可以是字符串(用于语言模型)或消息列表(用于对话模型)。这些提示的数据类型相当简单,但它们的构造却并非如此。LangChain的价值在于:
- 用于字符串提示和消息提示的标准接口
- 用于字符串提示模板和消息提示模板的标准接口
- 示例选择器:用于将示例插入提示中,以便语言模型进行遵循
- 输出解析器:用于将指令插入到提示中,作为语言模型输出信息的格式,以及将字符串输出解析为所需格式的方法。
《自然语言处理从入门到应用——LangChain:提示(Prompts)》系列文章为特定类型的字符串提示、特定类型的聊天提示、示例选择器和输出解析器提供了深入的文档。在本文中,我们先介绍了一个用于简单提示的标准接口的快速入门指南。
PromptTemplates
PromptTemplates
负责构建提示值。这些PromptTemplates
可以执行格式化、示例选择等操作。从高层次上讲,这些基本上是公开了format_prompt
方法以构建提示的对象。在内部,可以发生任何事情。
from langchain.prompts import PromptTemplate, ChatPromptTemplate
string_prompt = PromptTemplate.from_template("tell me a joke about {subject}")
chat_prompt = ChatPromptTemplate.from_template("tell me a joke about {subject}")
string_prompt_value = string_prompt.format_prompt(subject="soccer")
chat_prompt_value = chat_prompt.format_prompt(subject="soccer")
to_string
当传递给LLM(预期为原始文本)时调用的方法:
string_prompt_value.to_string()
chat_prompt_value.to_string()
to_messages
当传递给ChatModel(预期为消息列表)时调用的方法。
string_prompt_value.to_messages()
chat_prompt_value.to_messages()
示例:文章来源:https://www.toymoban.com/news/detail-613101.html
[HumanMessage(content='tell me a joke about soccer', additional_kwargs={}, example=False)]
参考文献:
[1] LangChain 🦜️🔗 中文网,跟着LangChain一起学LLM/GPT开发:https://www.langchain.com.cn/
[2] LangChain中文网 - LangChain 是一个用于开发由语言模型驱动的应用程序的框架:http://www.cnlangchain.com/文章来源地址https://www.toymoban.com/news/detail-613101.html
到了这里,关于自然语言处理从入门到应用——LangChain:提示(Prompts)-[基础知识]的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!