Opencv实战——数字识别

这篇具有很好参考价值的文章主要介绍了Opencv实战——数字识别。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


前言

经过一段时间的python-opencv的学习,对opencv在图像处理方面的一些基本用法,既然学了,那就应该学以致用,就像着用现在学到的知识去实战一下,在网上看到了用opencv去实现银行卡的号码识别,但是因为讲解过于简略,所以就仿照着号码识别的基本思路一步一步的实现数字识别。因为不会科学上网,所以完整代码放在了gitee。

一、识别原理

在前面python-opencv中学到了模板匹配,而银行卡号码识别的基本思路也是基于模板匹配的,我觉得整个流程就是特征提取和特征匹配,通过读入一张号码模板图像,经过基本图像处理后得到每个数字得轮廓,然后对每个数字得轮廓进行读取并排序,就得到了一个模板。
opencv数字识别,Opencv学习笔记,opencv,计算机视觉,python
再读入样本图片,也是经过一系列得图像处理后的到数字串的轮廓,对没一串数字进行拆分提取数字轮廓,并与模板中的每个数字进行对比,得分最高的就是当前数字的数值。具体实现方法在代码实现里。
opencv数字识别,Opencv学习笔记,opencv,计算机视觉,python
因为找不到合适的样本图片,所以自己做了一张图片。

二、代码实现

1.制作模板

制作模板还是比较简单的,因为模板图片事先经过大小排序,而且图片也是灰度图的形式,不需要再对图像进行过多的处理。

# 导入工具包
from imutils import contours
import numpy as np
import argparse
import cv2
import myutils
# 设置参数
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True,
	help="path to input image")
ap.add_argument("-t", "--template", required=True,
	help="path to template OCR-A image")
args = vars(ap.parse_args())
# 绘图展示
def cv_show(name,img):
	cv2.imshow(name, img)
	cv2.waitKey(0)
	cv2.destroyAllWindows()
# 读取一个模板图像
img = cv2.imread(args["template"])
#cv_show('img',img)
# 灰度图
ref = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#cv_show('ref',ref)
# 二值图像
ref = cv2.threshold(ref, 10, 255, cv2.THRESH_BINARY_INV)[1]
#cv_show('ref',ref)
# 计算轮廓
#cv2.findContours()函数接受的参数为二值图,即黑白的(不是灰度图),cv2.RETR_EXTERNAL只检测外轮廓,cv2.CHAIN_APPROX_SIMPLE只保留终点坐标
#返回的list中每个元素都是图像中的一个轮廓
refCnts, hierarchy = cv2.findContours(ref.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
#外画轮廓
cv2.drawContours(img,refCnts,-1,(0,0,255),3)
#cv_show('img',img)
#print (np.array(refCnts).shape)
refCnts = myutils.sort_contours(refCnts, method="left-to-right")[0] #排序,从左到右,从上到下
digits = {}
# 遍历每一个轮廓
for (i, c) in enumerate(refCnts):
	# 计算外接矩形并且resize成合适大小
	(x, y, w, h) = cv2.boundingRect(c)
	roi = ref[y:y + h, x:x + w]
	roi = cv2.resize(roi, (57, 88))
	#cv_show('image',roi)
	# 每一个数字对应每一个模板
	digits[i] = roi

2.样本识别

从样本图片看出,数字串并不是有规律的排序,而且分布杂乱,这个时候就需要对图像进行处理,先将图像转成灰度图,再二值化。这个时候图像只剩数字串。opencv数字识别,Opencv学习笔记,opencv,计算机视觉,python

数字串用sobel算子画出数字串的边缘,通过一到两次闭操作(先膨胀,再腐蚀),闭操作的目的其实就是将数字连在一起,前面设置的卷积核大小也是影响闭操作的,不同大小的卷积核效果不同,这样方便后面将整个数字串框起来,之后的操作其实和制作模板差不多,将数字串框出,对数字进行分割,每个数字和模板一一对比,得分最高的就是这个数字的数值。
.

# 初始化卷积核
rectKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (9, 9))
sqKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (9, 9))

#读取输入图像,预处理
image = cv2.imread(args["image"])
#cv_show('image',image)
#image = myutils.resize(image, width=300)
# 灰度图
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
#cv_show('gray',gray)
#二值图像
tophat = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV)[1]
#cv_show('tophat',tophat)
# 画边框
gradX = cv2.Sobel(tophat, ddepth=cv2.CV_32F, dx=1, dy=0, #ksize=-1相当于用3*3的
	ksize=-1)
gradX = np.absolute(gradX)
(minVal, maxVal) = (np.min(gradX), np.max(gradX))
gradX = (255 * ((gradX - minVal) / (maxVal - minVal)))
gradX = gradX.astype("uint8")

print (np.array(gradX).shape)
#cv_show('gradX',gradX)
#通过闭操作(先膨胀,再腐蚀)将数字连在一起
gradX = cv2.morphologyEx(gradX, cv2.MORPH_CLOSE, rectKernel)
#cv_show('gradX',gradX)
#再来一个闭操作
thresh = cv2.morphologyEx(gradX, cv2.MORPH_CLOSE, sqKernel) #再来一个闭操作
#cv_show('thresh',thresh)
# 计算轮廓
threshCnts, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
	cv2.CHAIN_APPROX_SIMPLE)
#画轮廓
cnts = threshCnts
cur_img = image.copy()
cv2.drawContours(cur_img,cnts,-1,(0,0,255),3)
#cv_show('img',cur_img)
locs = []
# 遍历轮廓
for (i, c) in enumerate(cnts):
	# 计算矩形
	(x, y, w, h) = cv2.boundingRect(c)
	ar = w / float(h)
	# 选择合适的区域,根据实际任务来,这里的基本都是四个数字一组
	if (w > 40) and (h > 10):
		#符合的留下来
		locs.append((x, y, w, h))

# 将符合的轮廓从左到右排序
locs = sorted(locs, key=lambda x:x[0])
output = []
# 遍历每一个轮廓中的数字
for (i, (gX, gY, gW, gH)) in enumerate(locs):
	# initialize the list of group digits
	groupOutput = []
	# 根据坐标提取每一个组
	group = tophat[gY :gY + gH , gX :gX + gW ]
	#cv_show('group',group)
	# 预处理
	group = cv2.threshold(group, 0, 255,cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
#	cv_show('group',group)
	# 计算每一组的轮廓
	digitCnts,hierarchy = cv2.findContours(group.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
	digitCnts = contours.sort_contours(digitCnts,
		method="left-to-right")[0]

	# 计算每一组中的每一个数值
	for c in digitCnts:
		# 找到当前数值的轮廓,resize成合适的的大小
		(x, y, w, h) = cv2.boundingRect(c)
		roi = group[y:y + h, x:x + w]
		roi = cv2.resize(roi, (55,87))
		#cv_show('roi',roi)

		# 计算匹配得分
		scores = []

		# 在模板中计算每一个得分
		for (digit, digitROI) in digits.items():
			# 模板匹配
			result = cv2.matchTemplate(roi, digitROI,
				cv2.TM_CCOEFF)
			(_, score, _, _) = cv2.minMaxLoc(result)
			scores.append(score)

		# 得到最合适的数字
		groupOutput.append(str(np.argmax(scores)))

	# 画出来
	cv2.rectangle(image, (gX - 5, gY - 5),
		(gX + gW + 5, gY + gH + 5), (0, 0, 255), 1)
	cv2.putText(image, "".join(groupOutput), (gX, gY - 15),
		cv2.FONT_HERSHEY_SIMPLEX, 0.65, (0, 0, 255), 2)

	# 得到结果
	output.extend(groupOutput)
cv2.imshow("Image", image)
cv2.waitKey(0)

效果:
opencv数字识别,Opencv学习笔记,opencv,计算机视觉,python

总结

在调试的过程中发现,数字8和数字6经常会识别成0,原因可能是因为,8和6中的圆圈与0的模板匹配,导致得分较高,后面处理就是在模板0中加了一横,然后我发现样本中并没有0,索性就不加了。opencv数字识别,Opencv学习笔记,opencv,计算机视觉,python文章来源地址https://www.toymoban.com/news/detail-613981.html

到了这里,关于Opencv实战——数字识别的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 基于深度学习的人脸性别年龄识别 - 图像识别 opencv 计算机竞赛

    🔥 优质竞赛项目系列,今天要分享的是 🚩 毕业设计 人脸性别年龄识别系统 - 图像识别 opencv 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:3分 🧿 更多资料, 项目分享: https

    2024年02月06日
    浏览(67)
  • 计算机竞赛 深度学习 opencv python 公式识别(图像识别 机器视觉)

    🔥 优质竞赛项目系列,今天要分享的是 🚩 基于深度学习的数学公式识别算法实现 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:4分 创新点:4分 🧿 更多资料, 项目分享: https://gitee.com/d

    2024年02月07日
    浏览(57)
  • 计算机竞赛 深度学习 python opencv 火焰检测识别

    🔥 优质竞赛项目系列,今天要分享的是 🚩 基于深度学习的火焰识别算法研究与实现 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:4分 工作量:4分 创新点:3分 🧿 更多资料, 项目分享: https://gitee.co

    2024年02月07日
    浏览(50)
  • python 机器视觉 车牌识别 - opencv 深度学习 机器学习 计算机竞赛

    🔥 优质竞赛项目系列,今天要分享的是 🚩 基于python 机器视觉 的车牌识别系统 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:3分 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/postgraduate 车牌识别其实是个经典的机器视觉任务了,

    2024年02月06日
    浏览(54)
  • 计算机竞赛 python 机器视觉 车牌识别 - opencv 深度学习 机器学习

    🔥 优质竞赛项目系列,今天要分享的是 🚩 基于python 机器视觉 的车牌识别系统 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:3分 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/postgraduate 车牌识别其实是个经典的机器视觉任务了,

    2024年02月12日
    浏览(62)
  • 计算机竞赛 深度学习 python opencv 动物识别与检测

    🔥 优质竞赛项目系列,今天要分享的是 🚩 基于深度学习的动物识别算法研究与实现 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:4分 工作量:4分 创新点:3分 🧿 更多资料, 项目分享: https://gitee.co

    2024年02月07日
    浏览(61)
  • python opencv 深度学习 指纹识别算法实现 计算机竞赛

    🔥 优质竞赛项目系列,今天要分享的是 🚩 python opencv 深度学习 指纹识别算法实现 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:4分 创新点:4分 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🧿 更多资料, 项目分享: https://gitee.com/d

    2024年02月06日
    浏览(62)
  • 计算机竞赛 深度学习 python opencv 实现人脸年龄性别识别

    🔥 优质竞赛项目系列,今天要分享的是 🚩 基于深度学习的人脸年龄性别识别算法实现 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:4分 工作量:4分 创新点:3分 🧿 更多资料, 项目分享: https://gitee

    2024年02月07日
    浏览(77)
  • python+深度学习+opencv实现植物识别算法系统 计算机竞赛

    🔥 优质竞赛项目系列,今天要分享的是 🚩 基于深度学习的植物识别算法研究与实现 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:4分 工作量:4分 创新点:4分 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/postgraduate Google DeepMind公司研究员与牛津大学计算

    2024年02月07日
    浏览(82)
  • 计算机竞赛 深度学习 机器视觉 人脸识别系统 - opencv python

    🔥 优质竞赛项目系列,今天要分享的是 🚩 深度学习 机器视觉 人脸识别系统 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:3分 🧿 更多资料, 项目分享: https://gitee.com/dancheng

    2024年02月07日
    浏览(83)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包