【Python机器学习】实验04(2) 机器学习应用实践--手动调参

这篇具有很好参考价值的文章主要介绍了【Python机器学习】实验04(2) 机器学习应用实践--手动调参。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

机器学习应用实践

上一次练习中,我们采用逻辑回归并且应用到一个分类任务。

但是,我们用训练数据训练了模型,然后又用训练数据来测试模型,是否客观?接下来,我们仅对实验1的数据划分进行修改

需要改的地方为:下面红色部分给出了具体的修改。

1 训练数据数量将会变少

2 评估模型时要采用测试集

1.1 准备数据

本实验的数据包含两个变量(评分1和评分2,可以看作是特征),某大学的管理者,想通过申请学生两次测试的评分,来决定他们是否被录取。因此,构建一个可以基于两次测试评分来评估录取可能性的分类模型。

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
#利用pandas显示数据
path = 'ex2data1.txt'
data = pd.read_csv(path, header=None, names=['Exam1', 'Exam2', 'Admitted'])
data.head()
Exam1 Exam2 Admitted
0 34.623660 78.024693 0
1 30.286711 43.894998 0
2 35.847409 72.902198 0
3 60.182599 86.308552 1
4 79.032736 75.344376 1
positive=data[data["Admitted"].isin([1])]
negative=data[data["Admitted"].isin([0])]
#准备训练数据
col_num=data.shape[1]
X=data.iloc[:,:col_num-1]
y=data.iloc[:,col_num-1]
X.insert(0,"ones",1)
X.shape
(100, 3)
X=X.values
X.shape
(100, 3)
y=y.values
y.shape
(100,)

此处进行的调整为:要所有数据进行拆分

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test =train_test_split(X,y,test_size=0.2,random_state=0)
train_x,test_x,train_y,test_y
(array([[ 1.        , 82.36875376, 40.61825516],
        [ 1.        , 56.2538175 , 39.26147251],
        [ 1.        , 60.18259939, 86.3085521 ],
        [ 1.        , 64.03932042, 78.03168802],
        [ 1.        , 62.22267576, 52.06099195],
        [ 1.        , 62.0730638 , 96.76882412],
        [ 1.        , 61.10666454, 96.51142588],
        [ 1.        , 74.775893  , 89.5298129 ],
        [ 1.        , 67.31925747, 66.58935318],
        [ 1.        , 47.26426911, 88.475865  ],
        [ 1.        , 75.39561147, 85.75993667],
        [ 1.        , 88.91389642, 69.8037889 ],
        [ 1.        , 94.09433113, 77.15910509],
        [ 1.        , 80.27957401, 92.11606081],
        [ 1.        , 99.27252693, 60.999031  ],
        [ 1.        , 93.1143888 , 38.80067034],
        [ 1.        , 70.66150955, 92.92713789],
        [ 1.        , 97.64563396, 68.86157272],
        [ 1.        , 30.05882245, 49.59297387],
        [ 1.        , 58.84095622, 75.85844831],
        [ 1.        , 30.28671077, 43.89499752],
        [ 1.        , 35.28611282, 47.02051395],
        [ 1.        , 94.44336777, 65.56892161],
        [ 1.        , 51.54772027, 46.85629026],
        [ 1.        , 79.03273605, 75.34437644],
        [ 1.        , 53.97105215, 89.20735014],
        [ 1.        , 67.94685548, 46.67857411],
        [ 1.        , 83.90239366, 56.30804622],
        [ 1.        , 74.78925296, 41.57341523],
        [ 1.        , 45.08327748, 56.31637178],
        [ 1.        , 90.44855097, 87.50879176],
        [ 1.        , 71.79646206, 78.45356225],
        [ 1.        , 34.62365962, 78.02469282],
        [ 1.        , 40.23689374, 71.16774802],
        [ 1.        , 61.83020602, 50.25610789],
        [ 1.        , 79.94481794, 74.16311935],
        [ 1.        , 75.01365839, 30.60326323],
        [ 1.        , 54.63510555, 52.21388588],
        [ 1.        , 34.21206098, 44.2095286 ],
        [ 1.        , 90.54671411, 43.39060181],
        [ 1.        , 95.86155507, 38.22527806],
        [ 1.        , 85.40451939, 57.05198398],
        [ 1.        , 40.45755098, 97.53518549],
        [ 1.        , 32.57720017, 95.59854761],
        [ 1.        , 82.22666158, 42.71987854],
        [ 1.        , 68.46852179, 85.5943071 ],
        [ 1.        , 52.10797973, 63.12762377],
        [ 1.        , 80.366756  , 90.9601479 ],
        [ 1.        , 39.53833914, 76.03681085],
        [ 1.        , 52.34800399, 60.76950526],
        [ 1.        , 76.97878373, 47.57596365],
        [ 1.        , 38.7858038 , 64.99568096],
        [ 1.        , 91.5649745 , 88.69629255],
        [ 1.        , 99.31500881, 68.77540947],
        [ 1.        , 55.34001756, 64.93193801],
        [ 1.        , 66.74671857, 60.99139403],
        [ 1.        , 67.37202755, 42.83843832],
        [ 1.        , 89.84580671, 45.35828361],
        [ 1.        , 72.34649423, 96.22759297],
        [ 1.        , 50.4581598 , 75.80985953],
        [ 1.        , 62.27101367, 69.95445795],
        [ 1.        , 64.17698887, 80.90806059],
        [ 1.        , 94.83450672, 45.6943068 ],
        [ 1.        , 77.19303493, 70.4582    ],
        [ 1.        , 34.18364003, 75.23772034],
        [ 1.        , 66.56089447, 41.09209808],
        [ 1.        , 74.24869137, 69.82457123],
        [ 1.        , 82.30705337, 76.4819633 ],
        [ 1.        , 78.63542435, 96.64742717],
        [ 1.        , 32.72283304, 43.30717306],
        [ 1.        , 75.47770201, 90.424539  ],
        [ 1.        , 33.91550011, 98.86943574],
        [ 1.        , 89.67677575, 65.79936593],
        [ 1.        , 57.23870632, 59.51428198],
        [ 1.        , 84.43281996, 43.53339331],
        [ 1.        , 42.26170081, 87.10385094],
        [ 1.        , 49.07256322, 51.88321182],
        [ 1.        , 44.66826172, 66.45008615],
        [ 1.        , 97.77159928, 86.72782233],
        [ 1.        , 51.04775177, 45.82270146]]),
 array([0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0,
        1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0,
        0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0,
        1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0], dtype=int64),
 array([[ 1.        , 80.19018075, 44.82162893],
        [ 1.        , 42.07545454, 78.844786  ],
        [ 1.        , 35.84740877, 72.90219803],
        [ 1.        , 49.58667722, 59.80895099],
        [ 1.        , 99.8278578 , 72.36925193],
        [ 1.        , 74.49269242, 84.84513685],
        [ 1.        , 69.07014406, 52.74046973],
        [ 1.        , 60.45788574, 73.0949981 ],
        [ 1.        , 50.28649612, 49.80453881],
        [ 1.        , 83.48916274, 48.3802858 ],
        [ 1.        , 34.52451385, 60.39634246],
        [ 1.        , 55.48216114, 35.57070347],
        [ 1.        , 60.45555629, 42.50840944],
        [ 1.        , 69.36458876, 97.71869196],
        [ 1.        , 75.02474557, 46.55401354],
        [ 1.        , 61.37928945, 72.80788731],
        [ 1.        , 50.53478829, 48.85581153],
        [ 1.        , 77.92409145, 68.97235999],
        [ 1.        , 52.04540477, 69.43286012],
        [ 1.        , 76.0987867 , 87.42056972]]),
 array([1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1],
       dtype=int64))
X_train.shape, X_test.shape, y_train.shape, y_test.shape
((80, 3), (20, 3), (80,), (20,))
train_x.shape,train_y.shape
((80, 3), (20, 3))

1.2 定义假设函数

Sigmoid 函数

g g g 代表一个常用的逻辑函数(logistic function)为 S S S形函数(Sigmoid function),公式为: g ( z ) = 1 1 + e − z g\left( z \right)=\frac{1}{1+{{e}^{-z}}} g(z)=1+ez1
合起来,我们得到逻辑回归模型的假设函数:
h ( x ) = 1 1 + e − w T x {{h}}\left( x \right)=\frac{1}{1+{{e}^{-{{w }^{T}}x}}} h(x)=1+ewTx1

def sigmoid(z):
    return 1 / (1 + np.exp(-z))

让我们做一个快速的检查,来确保它可以工作。

w=np.zeros((X.shape[1],1))
#定义假设函数h(x)=1/(1+exp^(-w.Tx))
def h(X,w):
    z=X@w
    h=sigmoid(z)
    return h

1.3 定义代价函数

 y_hat=sigmoid(X@w)
X.shape,y.shape,np.log(y_hat).shape
((100, 3), (100,), (100, 1))

现在,我们需要编写代价函数来评估结果。
代价函数:
J ( w ) = − 1 m ∑ i = 1 m ( y ( i ) log ⁡ ( h ( x ( i ) ) ) + ( 1 − y ( i ) ) log ⁡ ( 1 − h ( x ( i ) ) ) ) J\left(w\right)=-\frac{1}{m}\sum\limits_{i=1}^{m}{({{y}^{(i)}}\log \left( {h}\left( {{x}^{(i)}} \right) \right)+\left( 1-{{y}^{(i)}} \right)\log \left( 1-{h}\left( {{x}^{(i)}} \right) \right))} J(w)=m1i=1m(y(i)log(h(x(i)))+(1y(i))log(1h(x(i))))

#代价函数构造
def cost(X,w,y):
    #当X(m,n+1),y(m,),w(n+1,1)
    y_hat=h(X,w)
    right=np.multiply(y.ravel(),np.log(y_hat).ravel())+np.multiply((1-y).ravel(),np.log(1-y_hat).ravel())
    cost=-np.sum(right)/X.shape[0]
    return cost
#设置初始的权值
w=np.zeros((X.shape[1],1))
#查看初始的代价
cost(X,w,y)
0.6931471805599453

看起来不错,接下来,我们需要一个函数来计算我们的训练数据、标签和一些参数 w w w的梯度。

1.4 定义梯度下降算法

gradient descent(梯度下降)
  • 这是批量梯度下降(batch gradient descent)
  • 转化为向量化计算: 1 m X T ( S i g m o i d ( X W ) − y ) \frac{1}{m} X^T( Sigmoid(XW) - y ) m1XT(Sigmoid(XW)y)
    ∂ J ( w ) ∂ w j = 1 m ∑ i = 1 m ( h ( x ( i ) ) − y ( i ) ) x j ( i ) \frac{\partial J\left( w \right)}{\partial {{w }_{j}}}=\frac{1}{m}\sum\limits_{i=1}^{m}{({{h}}\left( {{x}^{(i)}} \right)-{{y}^{(i)}})x_{_{j}}^{(i)}} wjJ(w)=m1i=1m(h(x(i))y(i))xj(i)
h(X,w).shape
(100, 1)
def grandient(X,y,iter_num,alpha):
    y=y.reshape((X.shape[0],1))
    w=np.zeros((X.shape[1],1))
    cost_lst=[]
   
    for i in range(iter_num):
        y_pred=h(X,w)-y
        temp=np.zeros((X.shape[1],1))
        for j in range(X.shape[1]):
            right=np.multiply(y_pred.ravel(),X[:,j])
            
            gradient=1/(X.shape[0])*(np.sum(right))
            temp[j,0]=w[j,0]-alpha*gradient
        w=temp
        cost_lst.append(cost(X,w,y.ravel()))
    return w,cost_lst

此处进行的调整为:采用train_x, train_y进行训练

train_x.shape,train_y.shape
((80, 3), (20, 3))
iter_num,alpha=100000,0.001
w,cost_lst=grandient(X_train, y_train,iter_num,alpha)
cost_lst[iter_num-1]
0.38273008292061245
plt.plot(range(iter_num),cost_lst,"b-o")
[<matplotlib.lines.Line2D at 0x1d0f1417d30>]

【Python机器学习】实验04(2) 机器学习应用实践--手动调参,《 Python机器学习入门实验 》,机器学习,人工智能

Xw—X(m,n) w (n,1)

w
array([[-4.86722837],
       [ 0.04073083],
       [ 0.04257751]])

1.5 绘制决策边界

高维数据的决策边界无法可视化

1.6 计算准确率

此处进行的调整为:采用X_test和y_test来测试进行训练

如何用我们所学的参数w来为数据集X输出预测,来给我们的分类器的训练精度打分。
逻辑回归模型的假设函数:
h ( x ) = 1 1 + e − w T X {{h}}\left( x \right)=\frac{1}{1+{{e}^{-{{w }^{T}}X}}} h(x)=1+ewTX1
h {{h}} h大于等于0.5时,预测 y=1

h {{h}} h小于0.5时,预测 y=0 。

#在训练集上的准确率
y_train_true=np.array([1 if item>0.5 else 0 for item in h(X_train,w).ravel()])
y_train_true
array([1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0,
       1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1,
       1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0,
       1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0])
#训练集上的误差
np.sum(y_train_true==y_train)/X_train.shape[0]
0.9125
#在测试集上的准确率
y_p_true=np.array([1 if item>0.5 else 0 for item in h(X_test,w).ravel()])
y_p_true
array([1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1])
y_test
array([1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1],
      dtype=int64)
np.sum(y_p_true==y_test)/X_test.shape[0]
0.95

1.7 试试用Sklearn来解决

此处进行的调整为:采用X_train和y_train进行训练

from sklearn.linear_model import LogisticRegression
clf = LogisticRegression()
clf.fit(X_train,y_train)

LogisticRegression()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
LogisticRegression()
#在训练集上的准确率为
clf.score(X_train,y_train)
0.9125

此处进行的调整为:采用X_test和y_test进行训练

#在测试集上却只有0.8
clf.score(X_test,y_test)
0.8

1.8 如何选择超参数?比如多少轮迭代次数好?

#1 利用pandas显示数据
path = 'ex2data1.txt'
data = pd.read_csv(path, header=None, names=['Exam1', 'Exam2', 'Admitted'])
data.head()
Exam1 Exam2 Admitted
0 34.623660 78.024693 0
1 30.286711 43.894998 0
2 35.847409 72.902198 0
3 60.182599 86.308552 1
4 79.032736 75.344376 1
positive=data[data["Admitted"].isin([1])]
negative=data[data["Admitted"].isin([0])]
col_num=data.shape[1]
X=data.iloc[:,:col_num-1]
y=data.iloc[:,col_num-1]
X.insert(0,"ones",1)
X=X.values
y=y.values
# 1 划分数据
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1)
X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.2, random_state=1)
X_train.shape,X_test.shape,X_val.shape 
((64, 3), (20, 3), (16, 3))
y_train.shape,y_test.shape,y_val.shape 
((64,), (20,), (16,))
# 2 修改梯度下降算法,为了不改变原有函数的签名,将训练集传给X,y
def grandient(X,y,X_val,y_val,iter_num,alpha):
    y=y.reshape((X.shape[0],1))
    w=np.zeros((X.shape[1],1))
    cost_lst=[]
    cost_val=[]
    lst_w=[]
    for i in range(iter_num):
        y_pred=h(X,w)-y
        temp=np.zeros((X.shape[1],1))
        for j in range(X.shape[1]):
            right=np.multiply(y_pred.ravel(),X[:,j])
            gradient=1/(X.shape[0])*(np.sum(right))
            temp[j,0]=w[j,0]-alpha*gradient
        w=temp
        cost_lst.append(cost(X,w,y.ravel()))
        cost_val.append(cost(X_val,w,y_val.ravel()))
        lst_w.append(w)
    return lst_w,cost_lst,cost_val

#调用梯度下降算法
iter_num,alpha=6000000,0.001
lst_w,cost_lst,cost_val=grandient(X_train,y_train,X_val,y_val,iter_num,alpha)
plt.plot(range(iter_num),cost_lst,"b-+")
plt.plot(range(iter_num),cost_val,"r-^")
plt.legend(["train","validate"])
plt.show()

【Python机器学习】实验04(2) 机器学习应用实践--手动调参,《 Python机器学习入门实验 》,机器学习,人工智能

#分析结果,看看在300万轮时的情况
print(cost_lst[500000],cost_val[500000])
0.24994786329203897 0.18926411883434127
#看看5万轮时测试误差
k=50000
w=lst_w[k]
print(cost_lst[k],cost_val[k])
y_p_true=np.array([1 if item>0.5 else 0 for item in h(X_test,w).ravel()])
y_p_true
np.sum(y_p_true==y_test)/X_test.shape[0]
0.45636730725628694 0.4573279187241135

0.7
#看看8万轮时测试误差
k=80000
w=lst_w[k]
print(cost_lst[k],cost_val[k])
y_p_true=np.array([1 if item>0.5 else 0 for item in h(X_test,w).ravel()])
y_p_true
np.sum(y_p_true==y_test)/X_test.shape[0]
0.40603054170171965 0.39424783821776516

0.75
#看看10万轮时测试误差
k=100000
print(cost_lst[k],cost_val[k])
w=lst_w[k]
y_p_true=np.array([1 if item>0.5 else 0 for item in h(X_test,w).ravel()])
y_p_true
np.sum(y_p_true==y_test)/X_test.shape[0]
0.381898564816469 0.36355983465263897

0.8
#分析结果,看看在300万轮时的情况
k=3000000
print(cost_lst[k],cost_val[k])
w=lst_w[k]
y_p_true=np.array([1 if item>0.5 else 0 for item in h(X_test,w).ravel()])
y_p_true
np.sum(y_p_true==y_test)/X_test.shape[0]
0.19780791870188535 0.11432680130573875

0.85
#分析结果,看看在500万轮时的情况
k=5000000
print(cost_lst[k],cost_val[k])
w=lst_w[k]
y_p_true=np.array([1 if item>0.5 else 0 for item in h(X_test,w).ravel()])
y_p_true
np.sum(y_p_true==y_test)/X_test.shape[0]
0.19393055410160026 0.10754181199189947

0.85
#在500轮时的情况
k=5999999

print(cost_lst[k],cost_val[k])
w=lst_w[k]
y_p_true=np.array([1 if item>0.5 else 0 for item in h(X_test,w).ravel()])
y_p_true
np.sum(y_p_true==y_test)/X_test.shape[0]
0.19319692059853838 0.10602762617262468

0.85

1.9 如何选择超参数?比如学习率设置多少好?

#1 设置一组学习率的初始值,然后绘制出在每个点初的验证误差,选择具有最小验证误差的学习率
alpha_lst=[0.1,0.08,0.03,0.01,0.008,0.003,0.001,0.0008,0.0003,0.00001]
def grandient(X,y,iter_num,alpha):
    y=y.reshape((X.shape[0],1))
    w=np.zeros((X.shape[1],1))
    cost_lst=[]
   
    for i in range(iter_num):
        y_pred=h(X,w)-y
        temp=np.zeros((X.shape[1],1))
        for j in range(X.shape[1]):
            right=np.multiply(y_pred.ravel(),X[:,j])
            
            gradient=1/(X.shape[0])*(np.sum(right))
            temp[j,0]=w[j,0]-alpha*gradient
        w=temp
        cost_lst.append(cost(X,w,y.ravel()))
    return w,cost_lst

lst_val=[]
iter_num=100000
lst_w=[]
for alpha in alpha_lst:
    w,cost_lst=grandient(X_train,y_train,iter_num,alpha)
    lst_w.append(w)
    lst_val.append(cost(X_val,w,y_val.ravel()))
lst_val
    
C:\Users\sanly\AppData\Local\Temp\ipykernel_8444\2221512341.py:5: RuntimeWarning: divide by zero encountered in log
  right=np.multiply(y.ravel(),np.log(y_hat).ravel())+np.multiply((1-y).ravel(),np.log(1-y_hat).ravel())
C:\Users\sanly\AppData\Local\Temp\ipykernel_8444\2221512341.py:5: RuntimeWarning: invalid value encountered in multiply
  right=np.multiply(y.ravel(),np.log(y_hat).ravel())+np.multiply((1-y).ravel(),np.log(1-y_hat).ravel())


[nan,
 nan,
 nan,
 1.302365681883988,
 0.9807991089640924,
 0.6863333276415668,
 0.3635612014705094,
 0.3942497801600069,
 0.5169328809489743,
 0.6448319202310255]
np.array(lst_val)
array([       nan,        nan,        nan, 1.30236568, 0.98079911,
       0.68633333, 0.3635612 , 0.39424978, 0.51693288, 0.64483192])
lst_val[3:]
[1.302365681883988,
 0.9807991089640924,
 0.6863333276415668,
 0.3635612014705094,
 0.3942497801600069,
 0.5169328809489743,
 0.6448319202310255]
np.argmin(np.array(lst_val[3:]))
3
#最好的学习率为
alpha_best=alpha_lst[3+np.argmin(np.array(lst_val[3:]))]
alpha_best
0.001
#可视化各学习率对应的验证误差
plt.scatter(alpha_lst[3:],lst_val[3:])
<matplotlib.collections.PathCollection at 0x1d1d48738b0>

【Python机器学习】实验04(2) 机器学习应用实践--手动调参,《 Python机器学习入门实验 》,机器学习,人工智能文章来源地址https://www.toymoban.com/news/detail-614994.html

#看看测试集的结果
#取出最好学习率对应的w
w_best=lst_w[3+np.argmin(np.array(lst_val[3:]))]
print(w_best)
y_p_true=np.array([1 if item>0.5 else 0 for item in h(X_test,w_best).ravel()])
y_p_true
np.sum(y_p_true==y_test)/X_test.shape[0]
[[-4.72412058]
 [ 0.0504264 ]
 [ 0.0332232 ]]

0.8
#查看其他学习率对应的测试集准确率
for w in lst_w[3:]:
    y_p_true=np.array([1 if item>0.5 else 0 for item in h(X_test,w).ravel()])
    print(np.sum(y_p_true==y_test)/X_test.shape[0])
0.75
0.75
0.6
0.8
0.75
0.6
0.55

1.10 如何选择超参数?试试调整l2正则化因子

实验:完成正则化因子的调参,下面给出了正则化因子lambda的范围,请参照学习率的调参,完成下面代码

# 1正则化的因子的范围可以比学习率略微设置的大一些
lambda_lst=[0.001,0.003,0.008,0.01,0.03,0.08,0.1,0.3,0.8,1,3,10]
# 2 代价函数构造
def cost_reg(X,w,y,lambd):
    #当X(m,n+1),y(m,),w(n+1,1)
    y_hat=sigmoid(X@w)
    right1=np.multiply(y.ravel(),np.log(y_hat).ravel())+np.multiply((1-y).ravel(),np.log(1-y_hat).ravel())
    right2=(lambd/(2*X.shape[0]))*np.sum(np.power(w[1:,0],2))
    cost=-np.sum(right1)/X.shape[0]+right2
    return cost


def grandient_reg(X,w,y,iter_num,alpha,lambd):
    y=y.reshape((X.shape[0],1))
    w=np.zeros((X.shape[1],1))
    cost_lst=[] 
    for i in range(iter_num):
        y_pred=h(X,w)-y
        temp=np.zeros((X.shape[1],1))
        for j in range(0,X.shape[1]):
            if j==0:
                right_0=np.multiply(y_pred.ravel(),X[:,j])
                gradient_0=1/(X.shape[0])*(np.sum(right_0))
                temp[j,0]=w[j,0]-alpha*(gradient_0)
            else:
                right=np.multiply(y_pred.ravel(),X[:,j])
                reg=(lambd/X.shape[0])*w[j,0]
                gradient=1/(X.shape[0])*(np.sum(right))
                temp[j,0]=w[j,0]-alpha*(gradient+reg)          
        w=temp
        cost_lst.append(cost_reg(X,w,y,lambd))
    return w,cost_lst
# 3 调用梯度下降算法用l2正则化
iter_num,alpha=100000,0.001
cost_val=[]
cost_w=[]
for lambd in lambda_lst:
    w,cost_lst=grandient_reg(X_train,w,y_train,iter_num,alpha,lambd)
    cost_w.append(w)
    cost_val.append(cost_reg(X_val,w,y_val,lambd))
cost_val
[0.36356132605416125,
 0.36356157522133403,
 0.3635621981384864,
 0.36356244730503007,
 0.36356493896065706,
 0.3635711680214138,
 0.36357365961439897,
 0.3635985745598491,
 0.3636608540941533,
 0.36368576277656284,
 0.36393475122711266,
 0.36480480418120226]
# 4 查找具有最小验证误差的索引,从而求解出最优的lambda值
idex=np.argmin(np.array(cost_val))
print("具有最小验证误差的索引为{}".format(idex))
lamba_best=lambda_lst[idex]
lamba_best
具有最小验证误差的索引为0

0.001
# 5 计算最好的lambda对应的测试结果
w_best=cost_w[idex]
print(w_best)
y_p_true=np.array([1 if item>0.5 else 0 for item in h(X_test,w_best).ravel()])
y_p_true
np.sum(y_p_true==y_test)/X_test.shape[0]
[[-4.7241201 ]
 [ 0.05042639]
 [ 0.0332232 ]]

0.8

附:系列文章

实验 目录 直达链接
1 Numpy以及可视化回顾 https://want595.blog.csdn.net/article/details/131891689
2 线性回归 https://want595.blog.csdn.net/article/details/131892463
3 逻辑回归 https://want595.blog.csdn.net/article/details/131912053
4 多分类实践(基于逻辑回归) https://want595.blog.csdn.net/article/details/131913690
5 机器学习应用实践-手动调参 https://want595.blog.csdn.net/article/details/131934812
6 贝叶斯推理 https://want595.blog.csdn.net/article/details/131947040
7 KNN最近邻算法 https://want595.blog.csdn.net/article/details/131947885
8 K-means无监督聚类 https://want595.blog.csdn.net/article/details/131952371
9 决策树 https://want595.blog.csdn.net/article/details/131991014
10 随机森林和集成学习 https://want595.blog.csdn.net/article/details/132003451
11 支持向量机 https://want595.blog.csdn.net/article/details/132010861
12 神经网络-感知器 https://want595.blog.csdn.net/article/details/132014769
13 基于神经网络的回归-分类实验 https://want595.blog.csdn.net/article/details/132127413
14 手写体卷积神经网络 https://want595.blog.csdn.net/article/details/132223494
15 将Lenet5应用于Cifar10数据集 https://want595.blog.csdn.net/article/details/132223751
16 卷积、下采样、经典卷积网络 https://want595.blog.csdn.net/article/details/132223985

到了这里,关于【Python机器学习】实验04(2) 机器学习应用实践--手动调参的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 基于Python机器学习、深度学习技术提升气象、海洋、水文领域实践应用能力

    查看原文 基于Python机器学习、深度学习技术提升气象、海洋、水文领域实践应用能力 目录 专题一、Python软件的安装及入门 专题二、气象常用科学计算库 专题三、气象海洋常用可视化库 专题四、爬虫和气象海洋数据 专题五、气象海洋常用插值方法 专题六、机器学习基础理

    2023年04月21日
    浏览(64)
  • 【Python机器学习】实验15 将Lenet5应用于Cifar10数据集

    CIFAR-10 数据集由10个类别的60000张32x32彩色图像组成,每类6000张图像。有50000张训练图像和10000张测试图像。数据集分为五个训练批次 和一个测试批次,每个批次有10000张图像。测试批次包含从每个类别中随机选择的1000张图像。训练批次包含随机顺序的剩余图像,但一些训练批

    2024年02月11日
    浏览(35)
  • 【Python机器学习】实验15 将Lenet5应用于Cifar10数据集(PyTorch实现)

    CIFAR-10 数据集由10个类别的60000张32x32彩色图像组成,每类6000张图像。有50000张训练图像和10000张测试图像。数据集分为五个训练批次 和一个测试批次,每个批次有10000张图像。测试批次包含从每个类别中随机选择的1000张图像。训练批次包含随机顺序的剩余图像,但一些训练批

    2024年02月11日
    浏览(37)
  • 机器学习模型调参

    1. 调参的目标 调参就是对模型的参数进行调整,以找到是模型性能最优的参数。调参的目标就是达到整体模型的偏差和方差的大和谐! 参数可分为两类:过程影响类参数和子模型影响类参数。 具体来说,过程影响类参数就是在子模型不变的前提下,调整“子模型数(n_esti

    2023年04月14日
    浏览(42)
  • 机器学习14(网格搜索调参)

    执行完手动调参后,接下来重点讨论机器学习调参的 理论基础 ,并介绍sklearn中调参的核心工具 GridSearchCV 调参其实就是去寻找一组最优参数,但最优参数中的 “最优” 如何界定? 先要明确的一点,我们针对哪一类参数进行调参,以及围绕什么目的进行调参? 影响机器学习

    2024年02月08日
    浏览(47)
  • GIS在地质灾害危险性评估与灾后重建中的实践技术应用及python机器学习灾害易发性评价模型建立与优化

    地质灾害是指全球地壳自然地质演化过程中,由于地球内动力、外动力或者人为地质动力作用下导致的自然地质和人类的自然灾害突发事件。由于降水、地震等自然作用下,地质灾害在世界范围内频繁发生。我国除滑坡灾害外,还包括崩塌、泥石流、地面沉降等各种地质灾害

    2023年04月11日
    浏览(44)
  • 机器学习中XGBoost算法调参技巧

    本文将详细解释XGBoost中十个最常用超参数的介绍,功能和值范围,及如何使用Optuna进行超参数调优。 对于XGBoost来说,默认的超参数是可以正常运行的,但是如果你想获得最佳的效果,那么就需要自行调整一些超参数来匹配你的数据,以下参数对于XGBoost非常重要: eta num_boos

    2024年02月11日
    浏览(50)
  • 【机器学习】模型调参工具:Hyperopt 使用指南

    在机器学习和数据科学领域,模型调参是一个不可避免的任务。为了提高模型的性能,通常需要调整不同的超参数。 常用的调参策略包括: 网格搜索(Grid Search) 在模型中尝试的每种可能的参数组合来工作,这意味着执行整个搜索将需要很长时间,而且计算成本可能会很高。

    2024年01月23日
    浏览(85)
  • 机器学习入门实例-加州房价预测-4(继续调参+评估)

    Randomized Search 如果需要尝试、调整的超参数只有有限几个,比如之前的例子,那只用grid search就够了;但如果超参数的搜索空间非常大,应该用RandomizedSearchCV。它有两个优点: 支持更大的参数范围 它可以更快找到最优的超参数组合。因为不是遍历所有组合,而是在指定的参数

    2023年04月18日
    浏览(63)
  • 【机器学习】小波变换在特征提取中的实践与应用

    在信号处理与数据分析领域,小波变换作为一种强大的数学工具,其多尺度分析特性使得它在特征提取中扮演着至关重要的角色。本文将从小波变换的基本原理出发,结合实例和代码,深入探讨小波变换在特征提取中的应用,并着重分析几种常见的基于小波变换的特征提取方

    2024年04月22日
    浏览(31)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包