[PyTorch][chapter 45][RNN_2]

这篇具有很好参考价值的文章主要介绍了[PyTorch][chapter 45][RNN_2]。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录:

  1.     RNN 问题
  2.     RNN 时序链问题
  3.     RNN 词组预测的例子
  4.      RNN简洁实现

 


一  RNN 问题

     RNN 主要有两个问题,梯度弥散和梯度爆炸

    1.1  损失函数

               

               [PyTorch][chapter 45][RNN_2],深度学习,人工智能

               

           梯度

              

              其中:

              [PyTorch][chapter 45][RNN_2],深度学习,人工智能

              [PyTorch][chapter 45][RNN_2],深度学习,人工智能

             则

                

     1.1  梯度爆炸(Gradient Exploding)

                  上面矩阵进行连乘后k,可能会出现里面参数会变得极大

               [PyTorch][chapter 45][RNN_2],深度学习,人工智能

                解决方案:

                  梯度剪裁:对W.grad进行约束

              [PyTorch][chapter 45][RNN_2],深度学习,人工智能

           

def print_current_grad(model):
    for  w in model.parameters():
        print(w.grad.norm())
    
loss.criterion(output, y)
model.zero_grad()
loss.backward()
print_current_grad(model)
torch.nn.utils.clip_grad_norm_(p,10)
print_current_grad(model)
optimizer.step()

             

     1.2  梯度弥散(Gradient vanishing)

[PyTorch][chapter 45][RNN_2],深度学习,人工智能

    是由于时序链过程,导致梯度为0,前面的层参数无法更新。

  解决方案 :

          LSTM.


二  RNN 时序链问题

    

# -*- coding: utf-8 -*-
"""
Created on Mon Jul 24 15:12:49 2023

@author: chengxf2
"""

import torch
import torch.nn as  nn
import numpy as np
import torch.optim as optim
import matplotlib.pyplot as plt  # 导入作图相关的包



'''
    生成训练的数据集
return 
   x: 当前时刻的输入值[batch_size=1, time_step=num_time_steps-1, feature=1]
   y: 当前时刻的标签值[batch_size=1, time_step=num_time_steps-1, feature=1]
'''
def sampleData():
    
    #生成一个[0-3]之间的数据
    start = np.random.randint(3,size=1)[0]
    num_time_steps =20
   
    #时序链长度为num_time_steps
    time_steps= np.linspace(start, start+10,num_time_steps)
    data = np.sin(time_steps)
    data = data.reshape(num_time_steps,1)
    
    #[batch, seq, dimension]
    x= torch.tensor(data[:-1]).float().view(1,num_time_steps-1,1)
    y= torch.tensor(data[1:]).float().view(1, num_time_steps-1,1)
 
    return x,y,time_steps

'''
    网络模型

args:
    input_size – 输入x的特征数量。
    hidden_size – 隐藏层的特征数量。
    num_layers – RNN的层数。
    nonlinearity – 指定非线性函数使用tanh还是relu。默认是tanh。
    bias – 默认是True
    batch_first – 如果True的话,那么输入Tensor的shape应该是[batch_size, time_step, feature],
           输出也是这样。默认是False
           dropout – 如果值非零,那么除了最后一层外,其它层的输出都会套上一个dropout层。

    bidirectional – 如果True,将会变成一个双向RNN,默认为False。
'''
class Net(nn.Module):
    
    def __init__(self,input_dim = 1, hidden_dim =10,  out_dim = 1):
        
        super(Net, self).__init__()
        self.rnn= nn.RNN(input_size = input_dim, 
                        hidden_size = hidden_dim,
                        num_layers = 1,
                        batch_first = True)
        
        self.linear= nn.Linear(in_features= hidden_dim, out_features=out_dim)
      
    #前向传播函数
    def forward(self,x,hidden_prev):
        # 给定一个h_state初始状态,(batch_size=1,layer=1,hidden_dim=10)
        # 给定一个序列x.shape:[batch_size, time_step, feature]
        hidden_dim =10
        
        #print("\n x.shape",x.shape)
        out,hidden_prev= self.rnn(x,hidden_prev)
        out = out.view(-1,hidden_dim) #[1,seq,h]=>[1*seq,h]
        out = self.linear(out)#[seq,h]=>[seq,1]
        
        out = out.unsqueeze(dim=0) #[seq,1] 指定的维度上面添加一个维度[batch=1,seq,1]
        
        return out, hidden_prev
    
    


def main():
    
    
    model = Net()
    criterion = nn.MSELoss()
    optimizer = optim.Adam(model.parameters(),lr=1e-3)
    
    
    hidden_dim =10
    #初始值
    hidden_prv = torch.zeros(1,1,hidden_dim)
    
    for iter in range(5000):
        
        x,y,time_steps =sampleData() #[batch=1,seq=99,dim=1]
        
        output, hidden_prev =model(x,hidden_prv)
        
        hidden_prev = hidden_prev.detach()
        
        
        loss = criterion(output, y)
        
        model.zero_grad()
        loss.backward()
        optimizer.step()
        
        
        if iter %100 ==0:
            
            print("Iter:{} loss{}".format(iter, loss.item()))
            # 对最后一次的结果作图查看网络的预测效果
            
    
    plt.plot(time_steps[0:-1], y.flatten(), 'r-')
    plt.plot(time_steps[0:-1], output.data.numpy().flatten(), 'b-')
main()

三  RNN 词组预测的例子

     这是参考李沐写得一个实现nn.RNN功能的例子

,一般很少用,都是直接用nn.RNN.

# -*- coding: utf-8 -*-
"""
Created on Wed Jul 26 14:17:49 2023

@author: chengxf2
"""

import math
import torch
from torch import nn
from torch.nn import functional as F
import numpy
import d2lzh_pytorch as d2l





#生成随机变量
def normal(shape,device):
    
    return torch.randn(size=shape, device=device)*0.01

#模型需要更新的权重系数
def get_params(vocab_size=27, num_hiddens=10, device='cuda:0'):
    
     num_inputs = num_outputs = vocab_size
     
     W_xh = normal((num_inputs,num_hiddens),device)
     W_hh = normal((num_hiddens,num_hiddens),device)
     b_xh = torch.zeros(num_hiddens,device=device)
     b_hh = torch.zeros(num_hiddens,device=device)
     
     W_hq = normal((num_hiddens,num_outputs),device)
     b_q = torch.zeros(num_outputs, device= device)

     params = [W_xh,W_hh, b_xh,b_hh, W_hq,b_q]
     
     for param in params:
         
         param.requires_grad_(True)
     
     return params
          
#初始的隐藏值 hidden ,tuple
def init_rnn_state(batch_size, hidden_size, device):
    
    h_init= torch.zeros((batch_size,hidden_size),device=device)
    return  (h_init,)


#RNN 函数定义了如何在时间序列上更新隐藏状态和输出
def rnn(X, h_init, params):
    
    W_xh,W_hh, b_xh,b_hh, W_hq,b_q = params
    
    hidden, = h_init
    
    outputs =[]
    for x_t in X:
        
        z_t = torch.mm(x_t, W_xh)+b_xh+ torch.mm(x_t,W_hh)+b_hh
        hidden =torch.tanh(z_t)
        
        out = torch.mm(hidden,W_hq)+b_q
        outputs.append(out)
        
    #[batch_size*T, dimension]
    return torch.cat(outputs, dim=0),(hidden,)

#根据给定的词,预测后面num_preds 个词
def predict_ch8(prefix, num_preds, net, vocab, device):

     #生成初始状态
     state = net.begin_state(batch_size=1, device=device)
     
     #把第一个词拿出来
     outputs = [vocab[prefix[0]]]
     
     
     get_input = lambda: torch.tensor([outputs[-1]],device=device,(1,1))
     
     for y in prefix[1:]:
         
         _,state = net(get_input(), state)
         outputs.append(vocab[y])
         
    for _ in range(num_preds):
        
        y, state = net(get_input(), state)
        
        outputs, (int(y.argmax(dim=1).reshape(1)))
    
    return ''.join([vocab.idex_to_toke[i] for i in output])


#梯度剪裁

def grad_clipping(net, theta):
    
    if isinstance(net, nn.Module):
        
        params = [p for p in net.parameters() if p.requires_grad_]
    else:
        params = net.params
        
    
    norm = torch.sqrt(sum(torch.sum(
        (p.grad**2)) for p in params)
        
    if norm > theta:
        
        for param in params:
            
            param.grad[:]*=theta/norm
        
        
     
class RNNModel:
    
      #从零开始实现RNN 网络模型#
      
      def __init__(self, vocab_size, hidden_size, device, get_params, init_rnn_state,forward_fn):
          forward_fn
          self.vocab_size = vocab_size, self.num_hiddens = hidden_size
          self.params = get_params(vocab_size, hidden_size, device)
          self.init_state = init_rnn_state(batch_size, hidden_size, device)
          self.forwad_fn = forward_fn
          
      #X.shape [batch_size,num_steps] 
      def __call__(self, X, state):
          
          X = F.one_hot(X.T, self.vocab_size).type(torch.float32)
          
          #[num_steps, batch_size]
          return self.forwad_fn(X, state, self.params)
      
      
      def begin_state(self, batch_size, device):
          
          return self.init_state(batch_size, self.num_hiddens, device)
        
        
# 训练模型

def train_epoch_ch8(net, train_iter, loss, updater, device,)

    state, timer = None, d21.Timer()

    metric = d21.Accumulator(2)

    for X,Y in train_iter:
        
         if state is None or use_random_iter:
             state = net.beign_state(bacth_size=X.shape[0])
        
         else
              if isinstance(net, nn.Module) and not isinstance(o, t)
                  state.detach_()
              else
                  for s in state:
                      s.detach_()
                      
        y = Y.T.reshape(-1)
        X,y = X.to(device),y.to(device)
        
        y_hat,state=net(X,state)
        
        l = loss(y_hat,y.long()).mean()
        
        if isinstance(updater, torch.optim.Optimizer):
            
            updater.zero_grad()
            l.backward()
            grad_clipping(net, 1)
            updater.step()
        else
            l.backward()
            grad_clipping(net, 1)
            updater(batch_size=1)
        
        metric.add(1&y.numel(),y.numel())
    return math.exp(metric[0]/metric[1]))
        

def train(net, train_iter,vocab, lr,num_epochs, device, use_random_iter=False):
    
    
    loss = nn.CrossEntropyLoss()
    
    animator = d21.animator(xlabel='epoch',ylabel='preplexity',
                            legend=['train'],xlim=[10,num_epochs])
    
    
    if isinstance(net, nn.Module):
        
        updater = torch.optim.SGD(net.parameters(),lr)
    else:
        
        updater = lambda batch_size: d21.sgd(net.parameters,batch_size,lr)
        
    predict = lambda prefix: predict_ch8(prefix, num_preds=50, net, vocab, device)
    
    for epoch in range(num_epochs):
        
        ppl, spped = train_epoch_ch8(net, train_iter, updater(),use_random_iter())
        
        if (epoch+1)%10 ==0:
            
            print(predict('time traverller'))
            animator.add(epoch+1, [ppl])
            
    print(f'困惑度{ppl:lf},{speed:1f} 标记/秒')
    print(predict('time traveller'))
    print(predict('traveller'))
        
                  
               
        
      
        
def main():

   num_hiddens =512
   num_epochs, ,lr = 500,1
   
   vocab_size = len(vocab)
   #[批量大小,时间步数]
   batch_size, num_steps = 32, 10
   train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)
   F.one_hot(torch.tensor([0,2]), len(vocab))
   X= torch.arange(10).reshape((2,5))
   Y = F.one_hot(X.T,28).shape #[step, batch_num]

   model = RNNModel(vocab_size, num_hiddens, dl2.try_gpu(), get_params, init_rnn_state, rnn)            
 
   
   train_ch8(model, train_iter, vocab,lr,num_epochs,dl2.try_gpu())
   
   
   
    
if __name__ == "__main__":
    
    main()

四  RNN简洁实现

     

# -*- coding: utf-8 -*-
"""
Created on Fri Jul 28 10:11:33 2023

@author: chengxf2
"""

import torch
from torch import nn
from torch.nn import functional as F




class SimpleRNN(nn.Module):
    
      def __init__(self,batch_size, input_size, hidden_size,out_size):
          
          super(SimpleRNN,self).__init__()
          
          self.batch_size,self.num_hiddens = batch_size,hidden_size
          self.rnn_layer = nn.RNN(input_size,hidden_size)
          self.linear = nn.Linear(hidden_size, out_size)
          
      
      def  forward(self, X,state):
          '''

          Parameters
          ----------
           X : [seq,batch, feature]
          state : [layer, batch, feature]
          -------
          #output:(layer, batch_size, hidden_size)
          state_new : []
          '''
          
          hidden, hidden_new = self.rnn_layer(X, state)
          
          hidden = hidden.view(-1, hidden.shape[-1])
          output = self.linear(hidden)
          
          
          
          return output ,hidden
    
      def init_hidden_state(self):
           '''
           初始化隐藏状态
          '''
           state = torch.zeros((1,self.batch_size, self.num_hiddens))
           return state
       
        
def main():
    seq_len = 3 #时序链长度
    batch_size =5 #批量大小
    input_size = 27
    hidden_size = 10
    out_size = 9
    
    X = torch.rand(size=(seq_len,batch_size,input_size))
    model = SimpleRNN(batch_size,input_size, hidden_size,out_size)
    
    init_state = model.init_hidden_state()
    output, hidden = model.forward(X, init_state)
    
    print("\n 输出值:",output.shape)
    print("\n 时刻的隐藏状态")
    print(hidden.shape)
    
if __name__ == "__main__":
    
    main()
       
        

pytorch入门10--循环神经网络(RNN)_rnn代码pytorch_微扬嘴角的博客-CSDN博客

【PyTorch】深度学习实践之 RNN基础篇——实现RNN_pytorch实现rnn_zoetu的博客-CSDN博客

RNN 的基本原理+pytorch代码_rnn代码_黄某某很聪明的博客-CSDN博客

55 循环神经网络 RNN 的实现【动手学深度学习v2】_哔哩哔哩_bilibili

《动手学深度学习》环境搭建全程详细教程 window用户_https://zh.d21.ai/d21-zh-1.1.zip_溶~月的博客-CSDN博客

ModuleNotFoundError: No module named ‘d2l’_卡拉比丘流形的博客-CSDN博客文章来源地址https://www.toymoban.com/news/detail-615137.html

到了这里,关于[PyTorch][chapter 45][RNN_2]的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • AI写作革命:PyTorch如何助力人工智能走向深度创新

    身为专注于人工智能研究的学者,我十分热衷于分析\\\"AI写稿\\\"与\\\"PyTorch\\\"这两项领先技术。面对日益精进的人工智能科技,\\\"AI写作\\\"已不再是天方夜谭;而\\\"PyTorch\\\"如璀璨明珠般耀眼,作为深度学习领域的尖端工具,正有力地推进着人工智能化进程。于此篇文章中,我将详细解析\\\"

    2024年04月13日
    浏览(57)
  • 《人工智能专栏》必读150篇 | 专栏介绍 & 专栏目录 & Python与PyTorch | 机器与深度学习 | 目标检测 | YOLOv5及改进 | YOLOv8及改进 | 关键知识点 | 工具

    各位读者们好,本专栏最近刚推出,限于个人能力有限,不免会有诸多错误,敬请私信反馈给我,接受善意的提示,后期我会改正,谢谢,感谢。 第一步 :[ 购买点击跳转 ] 第二步 : 代码函数调用关系图(全网最详尽-重要) 因文档特殊,不能在博客正确显示,请移步以下链接

    2024年02月02日
    浏览(78)
  • 探索人工智能:深度学习、人工智能安全和人工智能编程(文末送书)

    人工智能知识对于当今的互联网技术人来说已经是刚需。但人工智能的概念、流派、技术纷繁复杂,选择哪本书入门最适合呢? 这部被誉为人工智能“百科全书”的《人工智能(第3版)》,可以作为每个技术人进入 AI 世界的第一本书。 购书链接,限时特惠5折 这本书是美国

    2024年02月03日
    浏览(119)
  • 人工智能深度学习

    目录 人工智能 深度学习 机器学习 神经网络 机器学习的范围 模式识别 数据挖掘 统计学习 计算机视觉 语音识别 自然语言处理 机器学习的方法 回归算法 神经网络 SVM(支持向量机) 聚类算法 降维算法 推荐算法 其他 机器学习的分类 机器学习模型的评估 机器学习的应用 机

    2024年02月22日
    浏览(58)
  • 人工智能之深度学习

    第一章 人工智能概述 1.1人工智能的概念和历史 1.2人工智能的发展趋势和挑战 1.3人工智能的伦理和社会问题 第二章 数学基础 1.1线性代数 1.2概率与统计 1.3微积分 第三章 监督学习 1.1无监督学习 1.2半监督学习 1.3增强学习 第四章 深度学习 1.1神经网络的基本原理 1.2深度学习的

    2024年02月09日
    浏览(55)
  • 人工智能、机器学习、深度学习的区别

    人工智能涵盖范围最广,它包含了机器学习;而机器学习是人工智能的重要研究内容,它又包含了深度学习。 人工智能是一门以计算机科学为基础,融合了数学、神经学、心理学、控制学等多个科目的交叉学科。 人工智能是一门致力于使计算机能够模拟、模仿人类智能的学

    2024年02月08日
    浏览(56)
  • 人工智能学习07--pytorch14--ResNet网络/BN/迁移学习详解+pytorch搭建

    亮点:网络结构特别深 (突变点是因为学习率除0.1?) 梯度消失 :假设每一层的误差梯度是一个小于1的数,则在反向传播过程中,每向前传播一层,都要乘以一个小于1的误差梯度。当网络越来越深的时候,相乘的这些小于1的系数越多,就越趋近于0,这样梯度就会越来越小

    2023年04月11日
    浏览(159)
  • 人工智能的深度学习如何入门

    人工智能深度学习近年来成为热门的技术领域,被广泛应用于许多领域,如自然语言处理、图像识别、机器翻译等。学习人工智能深度学习需要具备一定的数学和编程基础,但对于初学者来说,并不需要过于复杂的数学和编程知识。本文将介绍人工智能深度学习的基本概念和

    2024年03月27日
    浏览(63)
  • 深度学习:探索人工智能的前沿

    人工智能(Artificial Intelligence,简称AI)是一门研究如何使计算机能够执行通常需要人类智能的任务的领域。从早期的符号推理到现代的深度学习,人工智能经历了漫长的发展过程。 20世纪50年代,AI的奠基性工作开始,研究者们试图通过符号推理来模拟人类思维过程。然而,

    2024年01月19日
    浏览(75)
  • 一探究竟:人工智能、机器学习、深度学习

    1.1 人工智能是什么?          1956年在美国Dartmounth 大学举办的一场研讨会中提出了人工智能这一概念。人工智能(Artificial Intelligence),简称AI,是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的

    2024年02月17日
    浏览(53)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包