深度学习入门(二):神经网络整体架构

这篇具有很好参考价值的文章主要介绍了深度学习入门(二):神经网络整体架构。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、前向传播

作用于每一层的输入,通过逐层计算得到输出结果

二、反向传播

作用于网络输出,通过计算梯度由深到浅更新网络参数
深度学习入门(二):神经网络整体架构,深度学习入门,深度学习,神经网络,人工智能,python

三、整体架构

层次结构:逐层变换数据
神经元:数据量、矩阵大小(代表输入特征的数量)

x : [ 1 , 3 ] x:[1,3] x[1,3]
w 1 : [ 3 , 4 ] w_1:[3,4] w1[3,4]
h i d d e n l a y e r 1 : [ 1 , 4 ] hidden layer1:[1,4] hiddenlayer1[1,4]
w 2 : [ 4 , 4 ] w_2:[4,4] w2[4,4]
h i d d e n l a y e r 2 : [ 1 , 4 ] hidden layer2:[1,4] hiddenlayer2[1,4]
w 3 : [ 4 , 1 ] w_3:[4,1] w3[4,1]
深度学习入门(二):神经网络整体架构,深度学习入门,深度学习,神经网络,人工智能,python

非线性操作加在每一步矩阵计算之后,增加神经网络的非线性。没有激活函数的每层都相当于矩阵相乘。就算你叠加了若干层之后,无非还是个矩阵相乘罢了。

深度学习入门(二):神经网络整体架构,深度学习入门,深度学习,神经网络,人工智能,python

四、神经元个数对结果的影响(Stanford例子)

Stanford可视化的神经网络,可以自行调参数试试

1、 num_neurons:1

将神经元设置为1,查看效果

layer_defs = [];
layer_defs.push({type:'input', out_sx:1, out_sy:1, out_depth:2});
layer_defs.push({type:'fc',  num_neurons:1, activation: 'tanh'});
layer_defs.push({type:'fc', num_neurons:1, activation: 'tanh'});
layer_defs.push({type:'softmax', num_classes:2});

net = new convnetjs.Net();
net.makeLayers(layer_defs);

trainer = new convnetjs.SGDTrainer(net, {learning_rate:0.01, momentum:0.1, batch_size:10, l2_decay:0.001});

查看circle data,可以看出效果不佳,看上去像切了一刀。
深度学习入门(二):神经网络整体架构,深度学习入门,深度学习,神经网络,人工智能,python

2、 num_neurons:2

将神经元设置为2,查看效果

layer_defs = [];
layer_defs.push({type:'input', out_sx:1, out_sy:1, out_depth:2});
layer_defs.push({type:'fc', num_neurons:2, activation: 'tanh'});
layer_defs.push({type:'fc', num_neurons:2, activation: 'tanh'});
layer_defs.push({type:'softmax', num_classes:2});

net = new convnetjs.Net();
net.makeLayers(layer_defs);

trainer = new convnetjs.SGDTrainer(net, {learning_rate:0.01, momentum:0.1, batch_size:10, l2_decay:0.001});

查看circle data,可以看出效果一般,看上去像切了两刀,抛物线状。
深度学习入门(二):神经网络整体架构,深度学习入门,深度学习,神经网络,人工智能,python

3、 num_neurons:3

将神经元设置为3,查看效果

layer_defs = [];
layer_defs.push({type:'input', out_sx:1, out_sy:1, out_depth:2});
layer_defs.push({type:'fc', num_neurons:3, activation: 'tanh'});
layer_defs.push({type:'fc', num_neurons:3, activation: 'tanh'});
layer_defs.push({type:'softmax', num_classes:2});

net = new convnetjs.Net();
net.makeLayers(layer_defs);

trainer = new convnetjs.SGDTrainer(net, {learning_rate:0.01, momentum:0.1, batch_size:10, l2_decay:0.001});

查看circle data,可以看出效果较好。
深度学习入门(二):神经网络整体架构,深度学习入门,深度学习,神经网络,人工智能,python

五、正则化

正则化 R ( w ) R(w) R(w)的作用:稳定时出现平滑边界
深度学习入门(二):神经网络整体架构,深度学习入门,深度学习,神经网络,人工智能,python

六、参数个数对结果的影响

深度学习入门(二):神经网络整体架构,深度学习入门,深度学习,神经网络,人工智能,python

七、激活函数

S i g m i o d Sigmiod Sigmiod:数值较大或较小时,梯度约为0,出现梯度消失问题
R e l u Relu Relu:当前主要使用的激活函数
深度学习入门(二):神经网络整体架构,深度学习入门,深度学习,神经网络,人工智能,python

八、数据预处理

深度学习入门(二):神经网络整体架构,深度学习入门,深度学习,神经网络,人工智能,python

九、参数初始化

通常我们都使用随机策略来进行参数初始化

十、DROP-OUT(传说中的七伤拳)

过拟合是神经网络非常头疼的一个问题!
左图是全连接神经网络,右图在神经网络训练过程中,每一层随机杀死部分神经元。DROP-OUT是防止神经网络过于复杂,进行随机杀死神经元的一种方法。
深度学习入门(二):神经网络整体架构,深度学习入门,深度学习,神经网络,人工智能,python文章来源地址https://www.toymoban.com/news/detail-615737.html

到了这里,关于深度学习入门(二):神经网络整体架构的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 深度学习入门教学——卷积神经网络CNN

    1、应用领域 检测任务 分类与检索 超分辨率重构 2、卷积网络与传统网咯的区别 传统神经网络和卷积神经网络都是用来 提取特征 的。 神经网络: 可以将其看作是一个二维的。 卷积神经网络: 可以将其看作是一个三维的。  3、整体框架 该层主要是对原始图像数据进行预处

    2024年02月10日
    浏览(38)
  • 深度学习入门(三):卷积神经网络(CNN)

    给定一张图片,计算机需要模型判断图里的东西是什么? (car、truck、airplane、ship、horse) CONV:卷积计算层,线性乘积求和 RELU:激励层,激活函数 POOL:池化层,取区域平均或最大(MAX POOL) PC:全连接层 对CNN来说,它是一块一块进行对比的,“小块”称之为Features特征。

    2024年02月11日
    浏览(42)
  • 深度学习入门——卷积神经网络CNN基本原理+实战

    ​ 卷积神经网络(Convolutional Neural Network,CNN)是深度学习技术中最基础的网络结构,模拟人脑工作,具备强大的特征学习能力。CNN结构主要由两部分组成:特征提取部分和分类部分color{blue}{特征提取部分和分类部分}特征提取部分和分类部分。特征提取部分网络将执行一系列

    2024年01月21日
    浏览(48)
  • 【AI】《动手学-深度学习-PyTorch版》笔记(十七):卷积神经网络入门

    我们在前面学习的多层感知机中,已经认识了全链接层,缺点很明显,在稍微大点的网络模型中,参数成指数级别增长。参数量很快就达到数十亿,这样的量级几乎无法计算。为此科学家们想出一个减少参数的方法:卷积。 从全链接层到卷积的推论,使用如下两个原则: 平

    2024年02月13日
    浏览(60)
  • 深度学习入门——深度卷积神经网络模型(Deep Convolution Neural Network,DCNN)概述

    机器学习是实现人工智能的方法和手段,其专门研究计算机如何模拟或实现人类的学习行为,以获取新的知识和技能,重新组织已有的知识结构使之不断改善自身性能的方法。计算机视觉技术作为人工智能的一个研究方向,其随着机器学习的发展而进步,尤其近10年来,以深

    2024年02月13日
    浏览(45)
  • Matlab深度学习入门实例:从0搭建卷积神经网络CNN(附完整代码)

    网上已具有大量卷积神经网络的讲解,故本文不在对此赘述,这篇文章针对已了解CNN基础结构和原理者,以一个例子搭建一个简单的卷积神经网络,作为正式迈入深度学习的第一步。 我们以深度学习最经典的案例——手写数字的识别,和一种经典的CNN——LeNet进行本次学习。

    2024年02月01日
    浏览(55)
  • 入门深度学习——基于全连接神经网络的手写数字识别案例(python代码实现)

    1.1 问题导入 如图所示,数字五的图片作为输入,layer01层为输入层,layer02层为隐藏层,找出每列最大值对应索引为输出层。根据下图给出的网络结构搭建本案例用到的全连接神经网络 1.2 手写字数据集MINST 如图所示,MNIST数据集是机器学习领域中非常经典的一个数据集,由6

    2024年02月03日
    浏览(45)
  • Inception 深度卷积神经网络(CNN)架构

    Inception是一种深度卷积神经网络(CNN)架构,由Google在2014年提出。它是一种基于多尺度卷积的网络结构,旨在解决传统CNN在处理不同大小的输入图像时存在的问题。 Inception的主要特点是使用了多个不同尺度的卷积核来提取不同尺度的特征。这些卷积核可以并行地应用于输入

    2024年02月12日
    浏览(35)
  • 深度学习基础入门篇[8]::计算机视觉与卷积神经网络、卷积模型CNN综述、池化讲解、CNN参数计算

    计算机视觉作为一门让机器学会如何去“看”的学科,具体的说,就是让机器去识别摄像机拍摄的图片或视频中的物体,检测出物体所在的位置,并对目标物体进行跟踪,从而理解并描述出图片或视频里的场景和故事,以此来模拟人脑视觉系统。因此,计算机视觉也通常被叫

    2024年02月05日
    浏览(81)
  • 深度神经网络基础——深度学习神经网络基础 & Tensorflow在深度学习的应用

    Tensorflow入门(1)——深度学习框架Tesnsflow入门 环境配置 认识Tensorflow 深度学习框架Tesnsflow 线程+队列+IO操作 文件读取案例 神经网络的种类: 基础神经网络:单层感知器,线性神经网络,BP神经网络,Hopfield神经网络等 进阶神经网络:玻尔兹曼机,受限玻尔兹曼机,递归神经

    2024年02月16日
    浏览(47)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包