机器学习——池化层

这篇具有很好参考价值的文章主要介绍了机器学习——池化层。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

池化层是什么?

池化层是深度学习中常用的一种层级结构,它可以对输入数据进行降采样,减少数据量,同时保留重要的特征信息。池化层通常紧跟在卷积层之后,可以有效地减少数据量和计算复杂度,提高模型的训练速度和泛化能力。
池化层,深度学习,Python,pytorch,机器学习,深度学习,人工智能

池化层的结构

池化层的结构与卷积层类似,它也由多个滤波器组成,每个滤波器对输入数据进行卷积操作,得到一个输出特征图。不同的是,池化层的卷积操作通常不使用权重参数,而是使用一种固定的池化函数,例如最大池化、平均池化等。

以下是池化层的结构图:

池化层的应用

池化层主要用于减少数据量和计算复杂度,同时保留重要的特征信息。它可以提高模型的训练速度和泛化能力,避免过拟合等问题。具体应用包括:

  • 图像分类:在卷积神经网络中,池化层常用于减少图像特征的维度,从而提高分类的准确率和速度。
  • 目标检测:在目标检测中,池化层可以对特征图进行降采样,从而提高检测的速度和精度。
  • 语音识别:在语音识别中,池化层可以降低声学特征的维度,从而提高识别的准确率和速度。

池化层的实现

在PyTorch中,可以使用nn.MaxPool2d和nn.AvgPool2d等函数实现最大池化和平均池化操作。以下是一个简单的例子:

import torch.nn as nn

# 定义一个池化层,使用最大池化函数,池化核大小为2x2,步长为2
pool = nn.MaxPool2d(kernel_size=2, stride=2)

# 输入特征图大小为[batch_size, channels, height, width]
input_tensor = torch.randn(1, 3, 28, 28)

# 对输入特征图进行池化操作
output_tensor = pool(input_tensor)

# 输出特征图大小为[batch_size, channels, height/2, width/2]
print(output_tensor.size())

以上代码定义了一个最大池化层,输入特征图大小为[1, 3, 28, 28],输出特征图大小为[1, 3, 14, 14],即将输入特征图的大小降低了一半。

池化层的理论推导

池化层的理论推导与卷积层类似,都是通过卷积操作对输入数据进行处理,得到输出特征图。以下是最大池化和平均池化的推导过程。

最大池化

最大池化是指对输入数据中每个区域内的最大值进行池化操作,得到输出特征图。以下是最大池化的推导过程:

  1. 定义输入数据和池化核大小

假设输入数据为 X ∈ R H × W X\in R^{H\times W} XRH×W,池化核大小为 k × k k\times k k×k,步长为 s s s

  1. 定义输出特征图

输出特征图 Y ∈ R H ′ × W ′ Y\in R^{H'\times W'} YRH×W的大小为:

H ′ = ⌊ H − k s ⌋ + 1 ,   W ′ = ⌊ W − k s ⌋ + 1 H'=\left\lfloor\frac{H-k}{s}\right\rfloor+1,\ W'=\left\lfloor\frac{W-k}{s}\right\rfloor+1 H=sHk+1, W=sWk+1

  1. 定义最大池化函数

最大池化函数 p o o l ( X ) pool(X) pool(X)的定义为:

p o o l ( X ) i , j = max ⁡ m = 0 k − 1 max ⁡ n = 0 k − 1 X i × s + m , j × s + n pool(X)_{i,j}=\max_{m=0}^{k-1}\max_{n=0}^{k-1}X_{i\times s+m,j\times s+n} pool(X)i,j=m=0maxk1n=0maxk1Xi×s+m,j×s+n

其中 i ∈ [ 0 , H ′ ) , j ∈ [ 0 , W ′ ) i\in[0,H'),j\in[0,W') i[0,H),j[0,W)

  1. 计算输出特征图

将最大池化函数应用于输入数据 X X X的每个区域,得到输出特征图 Y Y Y

Y i , j = p o o l ( X ) i , j Y_{i,j}=pool(X)_{i,j} Yi,j=pool(X)i,j

其中 i ∈ [ 0 , H ′ ) , j ∈ [ 0 , W ′ ) i\in[0,H'),j\in[0,W') i[0,H),j[0,W)

平均池化

平均池化是指对输入数据中每个区域内的平均值进行池化操作,得到输出特征图。以下是平均池化的推导过程:

  1. 定义输入数据和池化核大小

假设输入数据为 X ∈ R H × W X\in R^{H\times W} XRH×W,池化核大小为 k × k k\times k k×k,步长为 s s s

  1. 定义输出特征图

输出特征图 Y ∈ R H ′ × W ′ Y\in R^{H'\times W'} YRH×W的大小为:

H ′ = ⌊ H − k s ⌋ + 1 ,   W ′ = ⌊ W − k s ⌋ + 1 H'=\left\lfloor\frac{H-k}{s}\right\rfloor+1,\ W'=\left\lfloor\frac{W-k}{s}\right\rfloor+1 H=sHk+1, W=sWk+1

  1. 定义平均池化函数

平均池化函数 p o o l ( X ) pool(X) pool(X)的定义为:

p o o l ( X ) i , j = 1 k 2 ∑ m = 0 k − 1 ∑ n = 0 k − 1 X i × s + m , j × s + n pool(X)_{i,j}=\frac{1}{k^2}\sum_{m=0}^{k-1}\sum_{n=0}^{k-1}X_{i\times s+m,j\times s+n} pool(X)i,j=k21m=0k1n=0k1Xi×s+m,j×s+n

其中 i ∈ [ 0 , H ′ ) , j ∈ [ 0 , W ′ ) i\in[0,H'),j\in[0,W') i[0,H),j[0,W)

  1. 计算输出特征图

将平均池化函数应用于输入数据 X X X的每个区域,得到输出特征图 Y Y Y

Y i , j = p o o l ( X ) i , j Y_{i,j}=pool(X)_{i,j} Yi,j=pool(X)i,j

其中 i ∈ [ 0 , H ′ ) , j ∈ [ 0 , W ′ ) i\in[0,H'),j\in[0,W') i[0,H),j[0,W)

池化层的计算步骤

以下是最大池化和平均池化的计算步骤。

最大池化

假设输入数据为 X ∈ R H × W X\in R^{H\times W} XRH×W,池化核大小为 k × k k\times k k×k,步长为 s s s

  1. 定义输出特征图大小

输出特征图 Y ∈ R H ′ × W ′ Y\in R^{H'\times W'} YRH×W的大小为:

H ′ = ⌊ H − k s ⌋ + 1 ,   W ′ = ⌊ W − k s ⌋ + 1 H'=\left\lfloor\frac{H-k}{s}\right\rfloor+1,\ W'=\left\lfloor\frac{W-k}{s}\right\rfloor+1 H=sHk+1, W=sWk+1

  1. 定义输出特征图

初始化输出特征图 Y Y Y Y = 0 ∈ R H ′ × W ′ Y=0\in R^{H'\times W'} Y=0RH×W

  1. 计算输出特征图

对于每个输出特征图的位置 ( i , j ) (i,j) (i,j),计算输入数据 X X X中对应区域内的最大值,得到输出特征图 Y Y Y

Y i , j = max ⁡ m = 0 k − 1 max ⁡ n = 0 k − 1 X i × s + m , j × s + n Y_{i,j}=\max_{m=0}^{k-1}\max_{n=0}^{k-1}X_{i\times s+m,j\times s+n} Yi,j=m=0maxk1n=0maxk1Xi×s+m,j×s+n

其中 i ∈ [ 0 , H ′ ) , j ∈ [ 0 , W ′ ) i\in[0,H'),j\in[0,W') i[0,H),j[0,W)

平均池化

假设输入数据为 X ∈ R H × W X\in R^{H\times W} XRH×W,池化核大小为 k × k k\times k k×k,步长为 s s s

  1. 定义输出特征图大小

输出特征图 Y ∈ R H ′ × W ′ Y\in R^{H'\times W'} YRH×W的大小为:

H ′ = ⌊ H − k s ⌋ + 1 ,   W ′ = ⌊ W − k s ⌋ + 1 H'=\left\lfloor\frac{H-k}{s}\right\rfloor+1,\ W'=\left\lfloor\frac{W-k}{s}\right\rfloor+1 H=sHk+1, W=sWk+1

  1. 定义输出特征图

初始化输出特征图 Y Y Y Y = 0 ∈ R H ′ × W ′ Y=0\in R^{H'\times W'} Y=0RH×W

  1. 计算输出特征图

对于每个输出特征图的位置 ( i , j ) (i,j) (i,j),计算输入数据 X X X中对应区域内的平均值,得到输出特征图 Y Y Y

Y i , j = 1 k 2 ∑ m = 0 k − 1 ∑ n = 0 k − 1 X i × s + m , j × s + n Y_{i,j}=\frac{1}{k^2}\sum_{m=0}^{k-1}\sum_{n=0}^{k-1}X_{i\times s+m,j\times s+n} Yi,j=k21m=0k1n=0k1Xi×s+m,j×s+n

其中 i ∈ [ 0 , H ′ ) , j ∈ [ 0 , W ′ ) i\in[0,H'),j\in[0,W') i[0,H),j[0,W)

希望以上内容能够帮助您理解池化层的概念和应用,如有疑问请随时提出。文章来源地址https://www.toymoban.com/news/detail-615772.html

到了这里,关于机器学习——池化层的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Pytorch中最大池化层Maxpool的作用说明及实例使用(附代码)

    目录 1. 池化的功能 2. 神经原网络设定最大卷积层的作用 3. torch.nn.MaxPool2d() 4. 使用torch.nn.MaxPool2d()实战  3. Pytorch源码 1. 池化的功能 先通过与卷积的相同点及不同点说明池化的功能。 池化与卷积的共同点: 池化操作也是原图像矩阵(或特征图矩阵)与一个固定形状的窗口(

    2024年02月05日
    浏览(48)
  • 《人工智能专栏》必读150篇 | 专栏介绍 & 专栏目录 & Python与PyTorch | 机器与深度学习 | 目标检测 | YOLOv5及改进 | YOLOv8及改进 | 关键知识点 | 工具

    各位读者们好,本专栏最近刚推出,限于个人能力有限,不免会有诸多错误,敬请私信反馈给我,接受善意的提示,后期我会改正,谢谢,感谢。 第一步 :[ 购买点击跳转 ] 第二步 : 代码函数调用关系图(全网最详尽-重要) 因文档特殊,不能在博客正确显示,请移步以下链接

    2024年02月02日
    浏览(78)
  • 【探索AI】十八 深度学习之第3周:卷积神经网络(CNN)(二)-常见的卷积层、池化层与全连接层

    卷积神经网络(Convolutional Neural Network,CNN)是一种深度学习算法,特别适用于处理图像相关的任务。CNN通过模拟人脑视觉皮层的层次化结构,实现了对图像的高效特征提取和分类。下面将详细介绍CNN的基本原理和结构,包括卷积层、池化层和全连接层的作用和位置。 卷积层

    2024年04月16日
    浏览(45)
  • 机器学习&&深度学习——注意力提示、注意力池化(核回归)

    👨‍🎓作者简介:一位即将上大四,正专攻机器学习的保研er 🌌上期文章:机器学习深度学习——常见循环神经网络结构(RNN、LSTM、GRU) 📚订阅专栏:机器学习深度学习 希望文章对你们有所帮助 之前讲过的CNN和RNN模型,容易发现的一个点是,他们并没有刻意的、主观的

    2024年02月13日
    浏览(44)
  • Python到机器学习再到深度学习:一条完整的人工智能学习之路

    简短介绍Python在数据科学和机器学习领域的重要性。 概述本文的目标:提供一个清晰的学习路径,帮助初学者从Python基础学起,逐步过渡到机器学习和深度学习。 学习资源 :推荐一些学习Python的好书籍和在线课程。 书籍 :《Python Crash Course》Eric Matthes,适合初学者。 在线课

    2024年02月03日
    浏览(86)
  • 毕业设计-基于深度学习玉米叶病虫害识别系统 YOLO python 机器学习 目标检测 人工智能 算法

    目录 前言 设计思路 一、课题背景与意义 二、算法理论原理 2.1 卷积神经网络 2.2 YOLOv5算法 三、检测的实现 3.1 数据集 3.2 实验环境搭建 3.3 实验及结果分析 实现效果图样例 最后        📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准

    2024年02月03日
    浏览(136)
  • Python人工智能教学之掌握机器学习深度学习并提升实战能力(共72个视频教学+课程资料)云盘下载

    人工智能是未来的发展方向,掌握了人工智能,就掌握了钱图。。。 Python人工智能教学之掌握机器学习深度学习并提升实战能力(共72个视频教学+课程资料) 下载地址: 链接:https://pan.baidu.com/s/1ryJd5PNx1tLDDU-Q6JFXPQ?pwd=n6o8 提取码:n6o8 --来自百度网盘超级会员V2的分享 └─ 批

    2024年04月29日
    浏览(60)
  • 4. 池化层相关概念

    ① 最大池化层有时也被称为下采样。 ② dilation为空洞卷积,如下图所示。 ③ Ceil_model为当超出区域时,只取最左上角的值。 ④ 池化使得数据由5 * 5 变为3 * 3,甚至1 * 1的,这样导致计算的参数会大大减小。例如1080P的电影经过池化的转为720P的电影、或360P的电影后,同样的网速

    2024年02月11日
    浏览(43)
  • 6.5 池化层

    是什么 :池化层跟卷积层类似有个滑动窗口,用来取一个区域内的最大值或者平均值。 作用: 卷积神经网络的最后的部分应该要看到整个图像的全局,通过池化(汇聚)操作,逐渐汇聚要取的像素,最终实现学习全局表示的目标。同时,卷积层的所有优势也被保留在了中间层

    2024年02月14日
    浏览(46)
  • 池化层

    池化操作是CNN中非常常见的一种操作,池化层是模仿人的视觉系统对数据进行降维,池化操作通常也叫做子采样(Subsampling)或降采样(Downsampling),在构建卷积神经网络时,往往会用在卷积层之后,通过池化来降低卷积层输出的特征维度,有效减少网络参数的同时还可以防止过拟

    2024年02月12日
    浏览(41)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包