Nim游戏博弈论

这篇具有很好参考价值的文章主要介绍了Nim游戏博弈论。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

【模板】nim 游戏

题目描述

https://www.luogu.com.cn/problem/P2197

甲,乙两个人玩 nim 取石子游戏。

nim 游戏的规则是这样的:地上有 n n n 堆石子(每堆石子数量小于 1 0 4 10^4 104),每人每次可从任意一堆石子里取出任意多枚石子扔掉,可以取完,不能不取。每次只能从一堆里取。最后没石子可取的人就输了。假如甲是先手,且告诉你这 n n n 堆石子的数量,他想知道是否存在先手必胜的策略。

输入格式

本题有多组测试数据。

第一行一个整数 T T T T ≤ 10 T\le10 T10),表示有 T T T 组数据

接下来每两行是一组数据,第一行一个整数 n n n,表示有 n n n 堆石子, n ≤ 1 0 4 n\le10^4 n104

第二行有 n n n 个数,表示每一堆石子的数量.

输出格式

T T T 行,每行表示如果对于这组数据存在先手必胜策略则输出 Yes,否则输出 No

样例 #1

样例输入 #1

2
2
1 1
2
1 0

样例输出 #1

No
Yes

思路

如果初态为必胜态 a 1 ∧ a 2 ∧ a 3 . . . ∧ a n ! = 0 a_1 \land a_2 \land a_3 .. . \land a_n!=0 a1a2a3...an!=0,则先手必胜。

如果初态为必败态,即上式结果为0,则先手必败

证明:

  1. 必胜态一定可以给对手留下一个必败态

s = a 1 ∧ . . . ∧ a n ! = 0 s=a_1 \land ... \land a_n!=0 s=a1...an!=0,设s的二进制为1的最高位为k

那么一定有奇数个 a i a_i ai的二进制位的第k位为1,我们使用 a i ∧ s a_i\land s ais替换 a i a_i ai,那么

a 1 ∧ . . . ∧ a i ∧ s . . . ∧ a n = s ∧ s = 0 a_1 \land ... \land a_i \land s... \land a_n=s \land s=0 a1...ais...an=ss=0

同时可以保证 a i ∧ s < a i a_i \land s<a_i ais<ai

  1. 必败态一定给对手留下必胜态

因为必败态 a 1 ∧ a 2 . . . ∧ a n = 0 a_1 \land a_2 ... \land a_n=0 a1a2...an=0,看二进制位上面1的个数,相同位上面1的个数一定是偶数个,因此无论减少哪个数,异或和都不为0了,即给对手一个必胜态

代码

#include <bits/stdc++.h>

#define int long long
using namespace std;


signed main() {
#ifndef ONLINE_JUDGE
    freopen("test.in", "r", stdin);
    freopen("test.out", "w", stdout);
#endif
    int t;
    cin >> t;
    while (t--) {
        int n, x;
        cin >> n;
        int res = 0;
        while (n--) {
            cin >> x;
            res ^= x;
        }
        cout << (res ? "Yes" : "No") << endl;
    }
    return 0;
}

取火柴游戏

题目描述

https://www.luogu.com.cn/problem/P1247

输入 k k k k k k 个整数 n 1 , n 2 , ⋯   , n k n_1,n_2,\cdots,n_k n1,n2,,nk,表示有 k k k 堆火柴棒,第 i i i 堆火柴棒的根数为 n i n_i ni;接着便是你和计算机取火柴棒的对弈游戏。取的规则如下:每次可以从一堆中取走若干根火柴,也可以一堆全部取走,但不允许跨堆取,也不允许不取。

谁取走最后一根火柴为胜利者。

例如: k = 2 k=2 k=2 n 1 = n 2 = 2 n_1=n_2=2 n1=n2=2,A 代表你,P 代表计算机,若决定 A 先取:

  • A: ( 2 , 2 ) → ( 1 , 2 ) (2,2) \rightarrow (1,2) (2,2)(1,2),即从第一堆中取一根。
  • P: ( 1 , 2 ) → ( 1 , 1 ) (1,2) \rightarrow (1,1) (1,2)(1,1),即从第二堆中取一根。
  • A: ( 1 , 1 ) → ( 1 , 0 ) (1,1) \rightarrow (1,0) (1,1)(1,0)
  • P: ( 1 , 0 ) → ( 0 , 0 ) (1,0) \rightarrow (0,0) (1,0)(0,0)。P 胜利。

如果决定 A A A 后取:

  • P: ( 2 , 2 ) → ( 2 , 0 ) (2,2) \rightarrow (2,0) (2,2)(2,0)
  • A: ( 2 , 0 ) → ( 0 , 0 ) (2,0) \rightarrow (0,0) (2,0)(0,0)。A 胜利。

又如 k = 3 k=3 k=3 n 1 = 1 n_1=1 n1=1 n 2 = 2 n_2=2 n2=2 n 3 = 3 n_3=3 n3=3 A A A 决定后取:

  • P: ( 1 , 2 , 3 ) → ( 0 , 2 , 3 ) (1,2,3) \rightarrow (0,2,3) (1,2,3)(0,2,3)
  • A: ( 0 , 2 , 3 ) → ( 0 , 2 , 2 ) (0,2,3) \rightarrow (0,2,2) (0,2,3)(0,2,2)
  • A 已将游戏归结为 ( 2 , 2 ) (2,2) (2,2) 的情况,不管 P 如何取 A 都必胜。

编一个程序,在给出初始状态之后,判断是先取必胜还是先取必败,如果是先取必胜,请输出第一次该如何取。如果是先取必败,则输出 lose

输入格式

第一行,一个正整数 k k k

第二行, k k k 个整数 n 1 , n 2 , ⋯   , n k n_1,n_2,\cdots,n_k n1,n2,,nk

输出格式

如果是先取必胜,请在第一行输出两个整数 a , b a,b a,b,表示第一次从第 b b b 堆取出 a a a 个。第二行为第一次取火柴后的状态。如果有多种答案,则输出 ⟨ b , a ⟩ \lang b,a\rang b,a 字典序最小的答案( 即 b b b 最小的前提下,使 a a a 最小)。

如果是先取必败,则输出 lose

样例 #1

样例输入 #1

3
3 6 9

样例输出 #1

4 3
3 6 5

样例 #2

样例输入 #2

4
15 22 19 10

样例输出 #2

lose

提示

数据范围及约定

对于全部数据, k ≤ 500000 k \le 500000 k500000 n i ≤ 1 0 9 n_i \le 10^9 ni109

思路

与上一题的Nim游戏一样,这里需要特殊输出第一次拿走的数量

代码

#include <bits/stdc++.h>

#define int long long
using namespace std;


signed main() {
#ifndef ONLINE_JUDGE
    freopen("test.in", "r", stdin);
    freopen("test.out", "w", stdout);
#endif
    int n;
    cin >> n;
    vector<int> a(n + 1);
    int res = 0;
    for (int i = 1; i <= n; ++i) {
        cin >> a[i];
        res ^= a[i];
    }
    if (!res) {
        cout << "lose";
    } else {
        for (int i = 1; i <= n; i++) {
            if ((a[i] ^ res) < a[i]) {
                cout << (a[i] - (a[i] ^ res)) << " " << i << endl;
                a[i] = a[i] ^ res;
                break;
            }
        }
        for (int i = 1; i <= n; ++i) {
            cout << a[i] << " \n"[i == n];
        }
    }


    return 0;
}

取数游戏 II

题目描述

有一个取数的游戏。初始时,给出一个环,环上的每条边上都有一个非负整数。这些整数中至少有一个 0 0 0。然后,将一枚硬币放在环上的一个节点上。两个玩家就是以这个放硬币的节点为起点开始这个游戏,两人轮流取数,取数的规则如下:

  1. 选择硬币左边或者右边的一条边,并且边上的数非 0 0 0

  2. 将这条边上的数减至任意一个非负整数(至少要有所减小);

  3. 将硬币移至边的另一端。

如果轮到一个玩家走,这时硬币左右两边的边上的数值都是 0 0 0,那么这个玩家就输了。

如下图,描述的是 Alice 和 Bob 两人的对弈过程(其中黑色节点表示硬币所在节点)。

Nim游戏博弈论,ACM- ICPC,# 数学知识,游戏,算法,c++

各图的结果为:

A \text{A} A:Alice 胜; B \text{B} B:Bob 胜; C \text{C} C:Alice 胜; D \text{D} D:Bob 胜。

D \text{D} D 中,轮到 Bob 走时,硬币两边的边上都是 0 0 0,所以 Alice 获胜。

现在,你的任务就是根据给出的环、边上的数值以及起点(硬币所在位置),判断先走方是否有必胜的策略。

输入格式

第一行一个整数 N N N ( N ≤ 20 ) (N \leq 20) (N20),表示环上的节点数。

第二行 N N N 个数,数值不超过 30 30 30,依次表示 N N N 条边上的数值。硬币的起始位置在第一条边与最后一条边之间的节点上。

输出格式

仅一行。若存在必胜策略,则输出 YES,否则输出 NO

样例 #1

样例输入 #1

4
2 5 3 0

样例输出 #1

YES

样例 #2

样例输入 #2

3
0 0 0

样例输出 #2

NO

思路

要么一直顺时针走,要么一直逆时针走,每次走的时候一定是把这条边减小为0,否则对手可以反过来走,让你变成失败。

找第一个为0的位置,看初始点到这个点要走多少次,奇数次则先手获胜。文章来源地址https://www.toymoban.com/news/detail-615882.html

代码

#include <bits/stdc++.h>

#define int long long
#define yes cout << "YES" << endl;
#define no cout << "NO" << endl;
#define IOS cin.tie(0), cout.tie(0), ios::sync_with_stdio(false);
#define cxk 1
#define debug(s, x) if (cxk) cout << "#debug:(" << s << ")=" << x << endl;
using namespace std;

void solve() {
    int n;
    cin >> n;
    vector<int> a(n + 1);
    for (int i = 1; i <= n; ++i) {
        cin >> a[i];
    }
    int cnt1 = 0, cnt2 = 0;
    for (int i = 1; i <= n && a[i]; i++, cnt1++);
    for (int i = n; i >= 1 && a[i]; i--, cnt2++);
    if (cnt1 & 1 || cnt2 & 1) {
        yes
    } else {
        no
    }
}

signed main() {
    IOS
#ifndef ONLINE_JUDGE
    freopen("../test.in", "r", stdin);
    freopen("../test.out", "w", stdout);
#endif
    int _ = 1;
    while (_--) solve();
    return 0;
}

到了这里,关于Nim游戏博弈论的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • 【ACM博弈论】SG函数入门(2):博弈树SG函数的转移与子游戏的合并

    上一篇文章我们讲了两种经典的博弈模型:《【ACM博弈论】SG函数入门(1):从巴什博奕到尼姆游戏》,这一节我们开始讲解SG函数。 🎈 作者:Eriktse 🎈 简介:19岁,211计算机在读,现役ACM银牌选手🏆力争以通俗易懂的方式讲解算法!❤️欢迎关注我,一起交流C++/Python算法

    2023年04月11日
    浏览(5)
  • 【ACM博弈论】SG函数入门(1):从巴什博奕到尼姆游戏

    在我 小时候 以前做题的时候,遇到博弈题往往都是漫无目的地打表找规律,或者找一些特殊情况但是没有很好的分析方法。 其实博弈题是有比较套路的解题方法的,那就是利用SG函数,第一节不会讲到SG函数的具体用法,我们先来博弈入个门,学习一下最基本的博弈类型 :

    2023年04月10日
    浏览(8)
  • 数学知识——博弈论(巴什博奕、尼姆博奕、威佐夫博奕)思路及例题

    数学知识——博弈论(巴什博奕、尼姆博奕、威佐夫博奕)思路及例题

    博弈论基础     博弈论又被称为 对策论 (Game Theory),既是现代数学的一个新分支,也是运筹学的一个重要学科。博弈论主要研究公式化了的 激励结构间的相互作用 ,是研究具有斗争或竞争性质现象的数学理论和方法。博弈论考虑游戏中的 个体的预测行为和实际行为 ,并研

    2024年02月20日
    浏览(9)
  • 【博弈论】【第一章】博弈论导论

    【博弈论】【第一章】博弈论导论

    课程概述: 两个参与人A和B,轮流选择[3,4,5,6,7,8,9]中的一个整数(可重复)。当累计总和达到100的时候,博弈结束。此时判所选数字恰好使累计总和达到或超过100的参与人为输家。试问最先行动的A能赢得这场博弈吗?最优策略又是什么? 【解】 整个游戏的过程: 如果前面选择的

    2024年02月03日
    浏览(8)
  • 汤姆·齐格弗里德《纳什均衡与博弈论》笔记(4)博弈论与人性

    第五章 弗洛伊德的梦——博弈和大脑 大脑和经济学 曾经有一段时间——就像在弗洛伊德的年代——心理学家们无法准确地回答人类行为背后的大脑机制。但随着现代神经科学的兴起,情形改变了。比如,人类的情绪不再像过去一样是个谜。科学家们可以观察当人们感到轻蔑

    2024年01月25日
    浏览(10)
  • 【学习笔记】博弈论 ---- 非偏博弈

    【学习笔记】博弈论 ---- 非偏博弈

    本篇按照 Qingyu 在省集讲的加入我这个萌新的萌新理解而成。 听了 Qingyu 的博弈论讲解,感觉我之前学过的博弈就是冰山一角。 由于有一些东西没听懂,就主要写写我听懂的部分,没懂得以后再说吧。 所以这篇只是一个入门,关于博弈的一些习题可能会咕咕咕。 几个基本定

    2024年02月07日
    浏览(10)
  • 博弈论 | 斐波那契博弈

    博弈论 | 斐波那契博弈

    博弈论是二人或多人在平等的对局中各自利用对方的策略变换自己的对抗策略,达到取胜目标的理论。博弈论是研究互动决策的理论。博弈可以分析自己与对手的利弊关系,从而确立自己在博弈中的优势,因此有不少博弈理论,可以帮助对弈者分析局势,从而采取相应策略,最终达到

    2024年02月12日
    浏览(10)
  • 汤姆·齐格弗里德《纳什均衡与博弈论》笔记(7)博弈论与概率论

    第十一章 帕斯卡的赌注——博弈、概率、信息与无知 在与费马就这个问题的通信过程中,帕斯卡创造出了概率论。另外,帕斯卡在进行严谨的宗教反思中,得出了 概率 这个概念,它在此几百年后,成为一个关键的、对博弈论的提出有重要意义的数学概念。 帕斯卡观察到,

    2024年01月25日
    浏览(8)
  • 博弈论-策略式博弈矩阵、扩展式博弈树 习题 [HBU]

    博弈论-策略式博弈矩阵、扩展式博弈树 习题 [HBU]

    目录 前言: 题目与求解 11.请将“田忌赛马”的博弈过程用策略式(博弈矩阵)和扩展式(博弈树)分别进行表示,并用文字分别详细表述。 34.两个朋友在一起划拳喝酒,每个人有4个纯策略:杠子、老虎、鸡和虫子。 输赢规则是:杠子降老虎,老虎降鸡,鸡降虫子,虫子降

    2024年02月03日
    浏览(11)
  • 【博弈论笔记】第二章 完全信息静态博弈

    此部分博弈论笔记参考自经济博弈论(第四版)/谢识予和老师的PPT,是在平时学习中以及期末备考中整理的,主要注重对本章节知识点的梳理以及重点知识的理解,细节和逻辑部分还不是很完善,可能不太适合初学者阅读(看书应该会理解的更明白O(∩_∩)O哈哈~)。现更新到

    2024年02月10日
    浏览(10)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包