负二项分布(一种离散分布)

这篇具有很好参考价值的文章主要介绍了负二项分布(一种离散分布)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

负二项分布

负二项分布是伯努利分布的推广,它模拟了在指定(非随机)失败次数(表示为r)发生之前,一系列独立且同分布的伯努利试验中的成功次数

负二项分布可以用来确定一个系列中多于1次失败的概率
比如:计算一台机器彻底崩溃前的天数、输掉系列赛冠军需要进行多少场比赛

截图来源:Negative binomial distribution

负二项分布,# 概率与数理统计,概率论,负二项分布

负二项分布,# 概率与数理统计,概率论,负二项分布

负二项分布,# 概率与数理统计,概率论,负二项分布

负二项分布,# 概率与数理统计,概率论,负二项分布

负二项分布,# 概率与数理统计,概率论,负二项分布
负二项分布,# 概率与数理统计,概率论,负二项分布
负二项分布,# 概率与数理统计,概率论,负二项分布
负二项分布,# 概率与数理统计,概率论,负二项分布
方差:
Var = E [ X 2 ] − E [ X ] 2   Var = ∑ k = 0 ∞ k 2 ( k + r − 1 k ) p k ( 1 − p ) r − ( r p 1 − p ) 2 \text{Var}=E[X^2]-E[X]^2\\ ~\\ \text{Var}=\sum_{k=0}^{\infty}k^2\begin{pmatrix}k+r-1\\k\end{pmatrix}p^k(1-p)^r-(\frac{rp}{1-p})^2\\ Var=E[X2]E[X]2 Var=k=0k2(k+r1k)pk(1p)r(1prp)2
通过微分恒等式来计算 E [ X 2 ] E[X^2] E[X2]
p 2 d d p 1 = p 2 d d p ∑ k = 0 ∞ ( k + r − 1 k ) p k ( 1 − p ) r p^2\frac{d}{dp}1=p^2\frac{d}{dp}\sum_{k=0}^{\infty}\begin{pmatrix}k+r-1\\k\end{pmatrix}p^k(1-p)^r p2dpd1=p2dpdk=0(k+r1k)pk(1p)r
最后整理求得
E [ X 2 ] = r p + r 2 p 2 ( 1 − p ) 2   Var = E [ X 2 ] − E [ X ] 2 = r p + r 2 p 2 ( 1 − p ) 2 − ( r p 1 − p ) 2 = r p ( 1 − p ) 2   σ X 2 = r p ( 1 − p ) 2 E[X^2]=\frac{rp+r^2p^2}{(1-p)^2}\\ ~\\ \text{Var}=E[X^2]-E[X]^2=\frac{rp+r^2p^2}{(1-p)^2}-(\frac{rp}{1-p})^2=\frac{rp}{(1-p)^2}\\ ~\\ \sigma_X^2=\frac{rp}{(1-p)^2} E[X2]=(1p)2rp+r2p2 Var=E[X2]E[X]2=(1p)2rp+r2p2(1prp)2=(1p)2rp σX2=(1p)2rp

例子:
负二项分布,# 概率与数理统计,概率论,负二项分布文章来源地址https://www.toymoban.com/news/detail-615919.html

到了这里,关于负二项分布(一种离散分布)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【概率论与数理统计】二维随机变量:分布函数(联合分布函数、边缘分布函数)、联合概率密度、边缘概率密度、联合分布律、边缘分布律

    直观理解: 联合概率密度 草帽/山峰 边缘概率密度 切一刀的山峰切面 联合分布函数 切两刀山峰体 边缘分布函数 切一刀山峰体 联合分布律 和 边缘分布律 针对离散型随机变量 二维随机变量  联合分布函数(切两刀山峰体) 边缘分布函数 (切一刀山峰体)    【连续型随

    2024年02月05日
    浏览(24)
  • 概率论与数理统计(3)--指数分布函数及其期望、方差

    设随机变量X具有如下形式的密度函数,那么则称X服从参数为θ的指数分布, 记为X~EXP(θ).  指数分布的分布函数为: ①数学期望 如果X 服从参数为λ (λ0)的指数分布,那么指数分布X~EXP(θ)的数学期望: λ  ②方差 设X 服从参数为λ (λ0)的指数分布, 指数分布X~EXP(θ)的方差:λ^2。

    2024年02月11日
    浏览(30)
  • 《概率论与数理统计》学习笔记3-二维随机变量及其分布

    目录 二维随机变量及其分布函数 二维离散型随机变量及其概率分布 连续型随机变量及其概率密度 条件分布 二维随机变量的函数分布         二维随机变量的定义:                 X和Y是定义在随机试验E的 样本空间Ω 上的 两个随机变量 ,他们 构成的向量 (𝑋

    2024年02月07日
    浏览(40)
  • 《概率论与数理统计》学习笔记6-样本及样本函数的分布

    目录 总体 简单随机样本 直方图 样本分布函数 样本函数及其概率分布 𝜒2分布 𝑡分布 𝐹分布         总体:                 研究对象的全体         个体:                 总体中的每一个元素         总体容量:                 总体

    2024年02月08日
    浏览(29)
  • 概率论与数理统计:第二、三章:一维~n维随机变量及其分布

    1.随机变量 ①X=X(ω) ②一般用大写字母表示 常见的两类随机变量——离散型随机变量、连续型随机变量 2. 分布函数 F ( x ) F(x) F ( x ) (1)定义 1.定义: 称函数 F ( x ) = P { X ≤ x }   ( − ∞ x + ∞ ) F(x)=P{ X≤x} (-∞x+∞) F ( x ) = P { X ≤ x }   ( − ∞ x + ∞ ) 为随机变量X的分布函数,

    2024年02月13日
    浏览(32)
  • 概率论与数理统计:正态分布相关推论及推导(更新ing)

    统计量: X ‾ = 1 n ∑ i = 1 n X i , 其 中 X i ~ N ( μ , σ 2 ) overline{X}= cfrac{1}{n}sum_{i=1}^nX_{i},其中X_{i}text{textasciitilde} N(mu,{sigma^{2}} ) X = n 1 ​ i = 1 ∑ n ​ X i ​ , 其 中 X i ​ ~ N ( μ , σ 2 ) S 2 = 1 n − 1 ∑ i = 1 n ( X i − X ‾ ) 2 S^2= cfrac{1}{n-1}sum_{i=1}^n(X_{i}-overline{X})^2 S 2 = n −

    2024年02月07日
    浏览(34)
  • 2.带你入门matlab数理统计常见分布的概率密度函数(matlab程序)

    1. 简述       计算概率分布律及密度函数值 matlab直接提供了通用的计算概率密度函数值的函数,它们是pdf 和namepdf函数,使用方式如下: Y=pdf(‘name’,K,A,B)或者:namepdf (K,A,B) 上述函数表示返回在X=K处、参数为A、B、C的概率值或密度值,对于不同的分布,参数个数是不

    2024年02月03日
    浏览(26)
  • 概率论与数理统计中常见的随机变量分布律、数学期望、方差及其介绍

    设随机变量X的所有可能取值为0与1两个值,其分布律为 若分布律如上所示,则称X服从以P为参数的(0-1)分布或两点分布。记作X~ B(1,p) 0-1分布的分布律利用表格法表示为: X 0 1 P 1-P P 0-1分布的数学期望 E(X) = 0 * (1 - p) + 1 * p = p 二项分布的分布律如下所示: 其中P是事件在一次试验

    2024年02月05日
    浏览(31)
  • 【考研数学】概率论与数理统计 —— 第三章 | 二维随机变量及其分布(3,二维随机变量函数的分布)

    设 ( X , Y ) (X,Y) ( X , Y ) 为二维随机变量,以 X , Y X,Y X , Y 为变量所构成的二元函数 Z = φ ( X , Y ) Z=varphi(X,Y) Z = φ ( X , Y ) ,称为随机变量 ( X , Y ) (X,Y) ( X , Y ) 的函数,其分布一般有如下几种情形: ( X , Y ) (X,Y) ( X , Y ) 为二维离散型随机变量 设 ( X , Y ) (X,Y) ( X , Y ) 联合分布律为

    2024年02月07日
    浏览(28)
  • 概率论与数理统计:Ch2.一维随机变量及其分布 Ch3.二维随机变量及其分布

    1.随机变量 ①X=X(ω) ②一般用大写字母表示 常见的两类随机变量——离散型随机变量、连续型随机变量 2. 分布函数 F ( x ) F(x) F ( x ) (1)定义 1.定义: 称函数 F ( x ) = P { X ≤ x }   ( − ∞ x + ∞ ) F(x)=P{ X≤x} (-∞x+∞) F ( x ) = P { X ≤ x }   ( − ∞ x + ∞ ) 为随机变量X的分布函数,

    2024年02月03日
    浏览(39)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包