机器学习&&深度学习——随机梯度下降算法(及其优化)

这篇具有很好参考价值的文章主要介绍了机器学习&&深度学习——随机梯度下降算法(及其优化)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

在我们没有办法得到解析解的时候,我们可以用过梯度下降来进行优化,这种方法几乎可以所有深度学习模型。
关于优化的东西,我自己曾经研究过智能排班算法和优化,所以关于如何找局部最小值,以及如何跳出局部最小值的一些基本思想是有感触的,随机梯度算法和其优化学起来倒也不难。

梯度下降法

梯度下降法是一个一阶最优化算法,通常称为最速下降法,是通过函数当前点对应梯度的反方向,使用规定步长距离进行迭代搜索,从而找到函数的一个局部最小值的算法,最好的情况是找到全局最小值。

随机梯度下降法

但是直接使用使用梯度下降法的话,每次更新参数都需要用到所有的样本,样本总量太大的话就会对算法速度影响很大,所以有了随机梯度下降算法。
它是对梯度下降算法的一种改进,且每次只随机取一部分样本进行优化,样本数量一般是2的整数次幂,取值范围32~256,以保证计算精度的同时提升计算速度,是优化深度学习网络中最常用的一类算法。
其在训练中,通常会使用一个固定的学习率进行训练,即:
g t = ▽ θ t − 1 f ( θ t − 1 ) ▽ θ t = − η ∗ g t 其中, g t 是第 t 步的梯度, η 是学习率 g_t=▽_{θ_{t-1}}f(θ_{t-1})\\ ▽_{θ_t}=-η*g_t\\ 其中,g_t是第t步的梯度,η是学习率 gt=θt1f(θt1)θt=ηgt其中,gt是第t步的梯度,η是学习率
随机梯度下降算法在优化时,完全依赖于当前batch数据得到的梯度,而学习率则是调整梯度影响大小的参数,通过控制学习率η的大小,一定程度上可以控制网络训练速度。

随机梯度下降算法的问题

随机梯度下降对大多数情况都很有效,但还存在缺陷:
1、很难确定合适的η,且所有的参数使用同样的学习率可能并不是很有效。这种情况可以采用变化学习率的训练方式,如控制网络在初期以大的学习率进行参数更新,后期以小的学习率进行参数更新(其实和遗传算法中的交叉变异概率似的,大家可以去了解自适应遗传算法的思想,道理都是一样的)
2、更容易收敛到局部最优解,而且当落入到局部最优解的时候,不容易跳出。(其实也和遗传算法可能遇到的问题类似,当时是和模拟退火算法结合了,解决了过早收敛问题,实质思想就是增大变异概率,变异了就很可能跳出局部最优了)

标准动量优化

动量通过模拟物体运动时的惯性来更新网络中的参数,即更新时在一定程度上会考虑之前参数更新的方向,同时利用当前batch计算得到的梯度,将两者结合起来计算出最终参数需要更新的大小和方向。
在优化时引入动量思想旨在加速学习,特别是面对小而连续且含有很多噪声的梯度。利用动量不仅增加了学习参数的稳定性,还会更快的学习到收敛的参数。
在引入动量后,网络的参数更新方式:
g t = ▽ θ t − 1 f ( θ t − 1 ) m t = μ ∗ m t − 1 + g t ▽ θ t = − η ∗ m t m t 为当前动量的累加 μ 属于动量因子,用于调整上一步动量对参数的重要程度 g_t=▽_{θ_{t-1}}f(θ_{t-1})\\ m_t=μ*m_{t-1}+g_t\\ ▽_{θ_t}=-η*m_t\\ m_t为当前动量的累加\\ μ属于动量因子,用于调整上一步动量对参数的重要程度 gt=θt1f(θt1)mt=μmt1+gtθt=ηmtmt为当前动量的累加μ属于动量因子,用于调整上一步动量对参数的重要程度
在网络更新初期,可利用上一次参数更新,此时下降方向一致,乘以较大的μ能够进行很好的加速;在网络更新后期,随着梯度逐渐趋于0,在局部最小值来回震荡的时候,利用动量使得更新幅度增大,跳出局部最优解的陷阱。

Nesterov动量优化

Nesterov项(Nesterov动量)是在梯度更新时做出的校正,以避免参数更新的太快,同时提高灵敏度。在动量中,之前累积的动量并不会影响当前的梯度,所以Nesterov的改进就是让之前的动量直接影响当前的动量,即:
g t = ▽ θ t − 1 f ( θ t − 1 − η ∗ μ ∗ m t − 1 ) m t = μ ∗ m t − 1 + g t ▽ θ t = − η ∗ m t g_t=▽_{θ_{t-1}}f(θ_{t-1}-η*μ*m_{t-1})\\ m_t=μ*m_{t-1}+g_t\\ ▽_{θ_t}=-η*m_t gt=θt1f(θt1ημmt1)mt=μmt1+gtθt=ηmt
Nesterov动量与标准动量区别在于,在当前batch梯度的计算上,Nesterov动量的梯度计算是在施加当前速度之后的梯度。所以可以看成是在标准动量的方法上添加了一个校正因子,从而提高算法更新性能。
在训练开始的时候,参数可能离最最优质的较远,需要较大学习率,经过几轮训练后,减小训练学习率 (其实就是和自适应遗传算法的思想类似)。因此也提出了很多自适应学习率的算法Adadelta、RMSProp及adam等。文章来源地址https://www.toymoban.com/news/detail-616562.html

到了这里,关于机器学习&&深度学习——随机梯度下降算法(及其优化)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 机器学习笔记之优化算法(十七)梯度下降法在强凸函数的收敛性分析

    上一节介绍并证明了: 梯度下降法 在 强凸函数 上的收敛速度满足 Q mathcal Q Q -线性收敛 。 本节将介绍:在 更强 的条件下:函数 f ( ⋅ ) f(cdot) f ( ⋅ ) 在其定义域内 二阶可微 , 梯度下降法 在 f ( ⋅ ) f(cdot) f ( ⋅ ) 上的收敛速度存在什么样的结论。 关于 梯度下降法 在

    2024年02月12日
    浏览(52)
  • 机器学习--决策树、线性模型、随机梯度下降

    🤵‍♂️ 个人主页:@Lingxw_w的个人主页 ✍🏻作者简介:计算机科学与技术研究生在读 🐋 希望大家多多支持,我们一起进步!😄 如果文章对你有帮助的话, 欢迎评论 💬点赞👍🏻 收藏 📂加关注+    目录  一、决策树 二、线性模型 三、随机梯度下降 决策树(decision

    2024年02月03日
    浏览(43)
  • [机器学习] 1. 梯度下降 Gradient Descent 与随机梯度下降 Stochastic Gradient Descent

    ML Theory 太魔怔了!!!!! 从微积分课上我们学到 对一个 (mathscr C^2) 函数,其二阶泰勒展开的皮亚诺余项形式 [f(bm w\\\') = f(bm w) + langle nabla f(bm w), bm w\\\' - bm wrangle + o(|bm w\\\' - bm w|)] 这说明只要 (bm w\\\') 和 (bm w) 挨得足够接近,我们就可以用 (f(bm w) + langle nabla f(

    2024年02月08日
    浏览(54)
  • 机器学习笔记之优化算法(十六)梯度下降法在强凸函数上的收敛性证明

    本节将介绍: 梯度下降法 在 强凸函数 上的收敛性,以及 证明过程 。 凸函数与强凸函数 关于 凸函数 的定义使用 数学符号 表示如下: ∀ x 1 , x 2 ∈ R n , ∀ λ ∈ ( 0 , 1 ) ⇒ f [ λ ⋅ x 2 + ( 1 − λ ) ⋅ x 1 ] ≤ λ ⋅ f ( x 2 ) + ( 1 − λ ) ⋅ f ( x 1 ) forall x_1,x_2 in mathbb R^n, forall

    2024年02月11日
    浏览(44)
  • 深入探讨梯度下降:优化机器学习的关键步骤(一)

    在机器学习领域,梯度下降是一种核心的优化算法,它被广泛应用于训练神经网络、线性回归和其他机器学习模型中。本文将深入探讨梯度下降的工作原理,并且进行简单的代码实现 梯度下降是一种迭代优化算法,旨在寻找函数的局部最小值(或最大值)以最小化(或最大化

    2024年02月10日
    浏览(49)
  • 深入探讨梯度下降:优化机器学习的关键步骤(二)

    承接上篇,这篇主要有两个重点,一个是 eta 参数的调解;一个是在sklearn中实现梯度下降 在梯度下降算法中,学习率(通常用符号η表示,也称为步长或学习速率)的选择非常重要,因为它直接影响了算法的性能和收敛速度。学习率控制了每次迭代中模型参数更新的幅度。以

    2024年02月09日
    浏览(50)
  • 机器学习:基于梯度下降算法的逻辑回归实现和原理解析

    当涉及到二元分类问题时,逻辑回归是一种常用的机器学习算法。它不仅简单而且有效,通常是入门机器学习领域的第一步。本文将介绍逻辑回归的基本概念、原理、应用场景和代码示例。 逻辑回归是一种用于解决二元分类问题的统计学习方法。尽管其名称中包含\\\"回归\\\"一词

    2024年02月09日
    浏览(53)
  • 机器学习:基于梯度下降算法的线性拟合实现和原理解析

    当我们需要寻找数据中的趋势、模式或关系时,线性拟合和梯度下降是两个强大的工具。这两个概念在统计学、机器学习和数据科学领域都起着关键作用。本篇博客将介绍线性拟合和梯度下降的基本原理,以及它们在实际问题中的应用。 线性拟合是一种用于找到数据集中线性

    2024年02月10日
    浏览(37)
  • 每天五分钟机器学习:梯度下降算法和正规方程的比较

    梯度下降算法和正规方程是两种常用的机器学习算法,用于求解线性回归问题。它们各自有一些优点和缺点,下面将分别对它们进行详细的讨论。 1. 梯度下降算法是一种迭代的优化算法,通过不断迭代调整参数来逼近最优解。它的基本思想是根据目标函数的梯度方向,沿着负

    2024年02月13日
    浏览(42)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包