0 前期教程
-
【YOLO】朴实无华的yolov5环境配置
-
【YOLO】yolov5训练自己的数据集
1 什么是模型部署
前期教程当中,介绍了yolov5环境的搭建以及如何利用yolov5进行模型训练和测试,虽然能够实现图片或视频的目标识别,但都是基于pytorch这个深度学习框架来实现的。仅仅是为了使用训练好的模型,就需要附加一个巨大的框架,这样程序会显得很臃肿,不够优雅。因此,摆脱对深度学习框架的依赖,是非常有必要的。此即深度学习模型的部署。
2 怎么部署
这里使用的是opencv的dnn模块,可以实现读取并使用深度学习模型。但是,这个模块不支持pytorch模型,即训练好的pt格式的文件,因此,使用该模型时,还需要先将pt文件转换为opencv能够读取的模型格式,即onnx。
模型格式的转换使用的是yolov5自带的export.py文件,它提供了多种常见深度学习框架对应的文件格式。老规矩,使用前先看文件开头的注释:
我们需要的是onnx格式,因此在运行前先安装onnx:
pip install onnx
然后运行export.py文件:
python export.py --weights 'C:\Users\Zeoy\Desktop\Code\Python\yolov5-master\runs\train\exp19\weights\best.pt' --include onnx
生成的onnx文件也在原best.pt所在文件夹下。
转换完毕,接下来就是使用,运行如下所示代码:
import cv2
import numpy as np
class Onnx_clf:
def __init__(self, onnx:str='Material/best.onnx', img_size=640, classlist:list=['bottle']) -> None:
''' @func: 读取onnx模型,并进行目标识别
@para onnx:模型路径
img_size:输出图片大小,和模型直接相关
classlist:类别列表
@return: None
'''
self.net = cv2.dnn.readNet(onnx) # 读取模型
self.img_size = img_size # 输出图片尺寸大小
self.classlist = classlist # 读取类别列表
def img_identify(self, img, ifshow=True) -> np.ndarray:
''' @func: 图片识别
@para img: 图片路径或者图片数组
ifshow: 是否显示图片
@return: 图片数组
'''
if type(img) == str: src = cv2.imread(img)
else: src = img
height, width, _ = src.shape #注意输出的尺寸是先高后宽
_max = max(width, height)
resized = np.zeros((_max, _max, 3), np.uint8)
resized[0:height, 0:width] = src # 将图片转换成正方形,防止后续图片预处理(缩放)失真
# 图像预处理函数,缩放裁剪,交换通道 img scale out_size swapRB
blob = cv2.dnn.blobFromImage(resized, 1/255.0, (self.img_size, self.img_size), swapRB=True)
prop = _max / self.img_size # 计算缩放比例
dst = cv2.resize(src, (round(width/prop), round(height/prop)))
# print(prop) # 注意,这里不能取整,而是需要取小数,否则后面绘制框的时候会出现偏差
self.net.setInput(blob) # 将图片输入到模型
out = self.net.forward() # 模型输出
# print(out.shape)
out = np.array(out[0])
out = out[out[:, 4] >= 0.5] # 利用numpy的花式索引,速度更快, 过滤置信度低的目标
boxes = out[:, :4]
confidences = out[:, 4]
class_ids = np.argmax(out[:, 5:], axis=1)
class_scores = np.max(out[:, 5:], axis=1)
# out2 = out[0][out[0][:][4] > 0.5]
# for i in out[0]: # 遍历每一个框
# class_max_score = max(i[5:])
# if i[4] < 0.5 or class_max_score < 0.25: # 过滤置信度低的目标
# continue
# boxes.append(i[:4]) # 获取目标框: x,y,w,h (x,y为中心点坐标)
# confidences.append(i[4]) # 获取置信度
# class_ids.append(np.argmax(i[5:])) # 获取类别id
# class_scores.append(class_max_score) # 获取类别置信度
indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.25, 0.45) # 非极大值抑制, 获取的是索引
# print(indexes)
iffall = True if len(indexes)!=0 else False
# print(iffall)
for i in indexes: # 遍历每一个目标, 绘制目标框
box = boxes[i]
class_id = class_ids[i]
score = round(class_scores[i], 2)
x1 = round((box[0] - 0.5*box[2])*prop)
y1 = round((box[1] - 0.5*box[3])*prop)
x2 = round((box[0] + 0.5*box[2])*prop)
y2 = round((box[1] + 0.5*box[3])*prop)
# print(x1, y1, x2, y2)
self.drawtext(src,(x1, y1), (x2, y2), self.classlist[class_id]+' '+str(score))
dst = cv2.resize(src, (round(width/prop), round(height/prop)))
if ifshow:
cv2.imshow('result', dst)
cv2.waitKey(0)
return dst, iffall
def video_identify(self, video_path:str) -> None:
''' @func: 视频识别
@para video_path: 视频路径
@return: None
'''
cap = cv2.VideoCapture(video_path)
fps = cap.get(cv2.CAP_PROP_FPS)
# print(fps)
while cap.isOpened():
ret, frame = cap.read()
#键盘输入空格暂停,输入q退出
key = cv2.waitKey(1) & 0xff
if key == ord(" "): cv2.waitKey(0)
if key == ord("q"): break
if not ret: break
img, res = self.img_identify(frame, False)
cv2.imshow('result', img)
print(res)
if cv2.waitKey(int(1000/fps)) == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
@staticmethod
def drawtext(image, pt1, pt2, text):
''' @func: 根据给出的坐标和文本,在图片上进行绘制
@para image: 图片数组; pt1: 左上角坐标; pt2: 右下角坐标; text: 矩形框上显示的文本,即类别信息
@return: None
'''
fontFace = cv2.FONT_HERSHEY_COMPLEX_SMALL # 字体
# fontFace = cv2.FONT_HERSHEY_COMPLEX # 字体
fontScale = 1.5 # 字体大小
line_thickness = 3 # 线条粗细
font_thickness = 2 # 文字笔画粗细
line_back_color = (0, 0, 255) # 线条和文字背景颜色:红色
font_color = (255, 255, 255) # 文字颜色:白色
# 绘制矩形框
cv2.rectangle(image, pt1, pt2, color=line_back_color, thickness=line_thickness)
# 计算文本的宽高: retval:文本的宽高; baseLine:基线与最低点之间的距离(本例未使用)
retval, baseLine = cv2.getTextSize(text,fontFace=fontFace,fontScale=fontScale, thickness=font_thickness)
# 计算覆盖文本的矩形框坐标
topleft = (pt1[0], pt1[1] - retval[1]) # 基线与目标框上边缘重合(不考虑基线以下的部分)
bottomright = (topleft[0] + retval[0], topleft[1] + retval[1])
cv2.rectangle(image, topleft, bottomright, thickness=-1, color=line_back_color) # 绘制矩形框(填充)
# 绘制文本
cv2.putText(image, text, pt1, fontScale=fontScale,fontFace=fontFace, color=font_color, thickness=font_thickness)
if __name__ == '__main__':
clf = Onnx_clf()
import tkinter as tk
from tkinter.filedialog import askopenfilename
tk.Tk().withdraw() # 隐藏主窗口, 必须要用,否则会有一个小窗口
source = askopenfilename(title="打开保存的图片或视频")
# source = r'C:\Users\Zeoy\Desktop\YOLOData\data\IMG_568.jpg'
if source.endswith('.jpg') or source.endswith('.png') or source.endswith('.bmp'):
res, out = clf.img_identify(source, False)
print(out)
cv2.imshow('result', res)
cv2.waitKey(0)
elif source.endswith('.mp4') or source.endswith('.avi'):
print('视频识别中...按q退出')
clf.video_identify(source)
else:
print('不支持的文件格式')
关于这个代码流程的一些解释:
-
首先是调用
readNet
函数读取onnx模型文件 -
然后对输入图片进行预处理。具体包括:首先需要用numpy将图片变成正方形(因为模型训练时用的就是正方形图片),不是直接拉伸,而是对短边进行填充值为0的像素,然后再调用
blobFromImage
函数对得到的正方形图片进行预处理,包括像素值归一化处理,设置输出图像大小,将颜色空间转换为RGB等,具体参数可以参考这篇博客。注意,这里的输出图像大小要和训练时选择的img-size
参数保持一致,默认是640,同时要记录一下正方形图片相对于输出图片大小的缩放比例,即正方形边长 / 640
,是一个浮点数。 -
接下来就是图片的输入和输出,
setInput
函数输入预处理好的图片块,然后调用forward
函数得到模型输出,这些模型输出即是圈出的目标对应的方框。 -
上面得到的方框数量有2w多个,但并不是所有的都是目标,需要根据置信度进行选择,这里用的是numpy的花式索引,速度比循环操作大大加快。然后调用
NMSBoxes
非极大值抑制,得到确定的目标,然后再循环进行画框输出即可。 -
具体内容就是读代码和注释即可理解。文章来源:https://www.toymoban.com/news/detail-617049.html
参考链接文章来源地址https://www.toymoban.com/news/detail-617049.html
到了这里,关于【YOLO】目标识别模型的导出和opencv部署(三)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!