【YOLO】目标识别模型的导出和opencv部署(三)

这篇具有很好参考价值的文章主要介绍了【YOLO】目标识别模型的导出和opencv部署(三)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

0 前期教程

  • 【YOLO】朴实无华的yolov5环境配置

  • 【YOLO】yolov5训练自己的数据集

1 什么是模型部署

  前期教程当中,介绍了yolov5环境的搭建以及如何利用yolov5进行模型训练和测试,虽然能够实现图片或视频的目标识别,但都是基于pytorch这个深度学习框架来实现的。仅仅是为了使用训练好的模型,就需要附加一个巨大的框架,这样程序会显得很臃肿,不够优雅。因此,摆脱对深度学习框架的依赖,是非常有必要的。此即深度学习模型的部署。

2 怎么部署

  这里使用的是opencv的dnn模块,可以实现读取并使用深度学习模型。但是,这个模块不支持pytorch模型,即训练好的pt格式的文件,因此,使用该模型时,还需要先将pt文件转换为opencv能够读取的模型格式,即onnx。

  模型格式的转换使用的是yolov5自带的export.py文件,它提供了多种常见深度学习框架对应的文件格式。老规矩,使用前先看文件开头的注释:

opencv yolov5,# Python,YOLO,opencv,python,dnn,onnx

我们需要的是onnx格式,因此在运行前先安装onnx:

pip install onnx

然后运行export.py文件:

python export.py --weights 'C:\Users\Zeoy\Desktop\Code\Python\yolov5-master\runs\train\exp19\weights\best.pt' --include onnx

生成的onnx文件也在原best.pt所在文件夹下。

  转换完毕,接下来就是使用,运行如下所示代码:

import cv2
import numpy as np

class Onnx_clf:
    def __init__(self, onnx:str='Material/best.onnx', img_size=640, classlist:list=['bottle']) -> None:
        '''	@func: 读取onnx模型,并进行目标识别
            @para	onnx:模型路径
                 	img_size:输出图片大小,和模型直接相关
                    classlist:类别列表
            @return: None
        '''
        self.net = cv2.dnn.readNet(onnx) # 读取模型
        self.img_size = img_size # 输出图片尺寸大小
        self.classlist = classlist # 读取类别列表

    def img_identify(self, img, ifshow=True) -> np.ndarray:
        '''	@func: 图片识别
            @para	img: 图片路径或者图片数组
                    ifshow: 是否显示图片
            @return: 图片数组
        '''
        if type(img) == str: src = cv2.imread(img)
        else: src = img
        height, width, _ = src.shape #注意输出的尺寸是先高后宽
        _max = max(width, height)
        resized = np.zeros((_max, _max, 3), np.uint8)
        resized[0:height, 0:width] = src  # 将图片转换成正方形,防止后续图片预处理(缩放)失真
        # 图像预处理函数,缩放裁剪,交换通道  img     scale              out_size              swapRB
        blob = cv2.dnn.blobFromImage(resized, 1/255.0, (self.img_size, self.img_size), swapRB=True)
        prop = _max / self.img_size  # 计算缩放比例
        dst = cv2.resize(src, (round(width/prop), round(height/prop)))
        # print(prop)  # 注意,这里不能取整,而是需要取小数,否则后面绘制框的时候会出现偏差
        self.net.setInput(blob) # 将图片输入到模型
        out = self.net.forward() # 模型输出
        # print(out.shape)
        out = np.array(out[0])
        out = out[out[:, 4] >= 0.5]  # 利用numpy的花式索引,速度更快, 过滤置信度低的目标
        boxes = out[:, :4]
        confidences = out[:, 4]
        class_ids = np.argmax(out[:, 5:], axis=1)
        class_scores = np.max(out[:, 5:], axis=1)
        # out2 = out[0][out[0][:][4] > 0.5]
        # for i in out[0]: # 遍历每一个框
        #     class_max_score = max(i[5:])
        #     if i[4] < 0.5 or class_max_score < 0.25: # 过滤置信度低的目标
        #         continue
        #     boxes.append(i[:4]) # 获取目标框: x,y,w,h (x,y为中心点坐标)
        #     confidences.append(i[4]) # 获取置信度
        #     class_ids.append(np.argmax(i[5:])) # 获取类别id
        #     class_scores.append(class_max_score) # 获取类别置信度
        indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.25, 0.45) # 非极大值抑制, 获取的是索引
        # print(indexes)
        iffall = True if len(indexes)!=0 else False
        # print(iffall)
        for i in indexes:   # 遍历每一个目标, 绘制目标框
            box = boxes[i]
            class_id = class_ids[i]
            score = round(class_scores[i], 2)
            x1 = round((box[0] - 0.5*box[2])*prop)
            y1 = round((box[1] - 0.5*box[3])*prop)
            x2 = round((box[0] + 0.5*box[2])*prop)
            y2 = round((box[1] + 0.5*box[3])*prop)
            # print(x1, y1, x2, y2)
            self.drawtext(src,(x1, y1), (x2, y2), self.classlist[class_id]+' '+str(score))
            dst = cv2.resize(src, (round(width/prop), round(height/prop)))
        if ifshow:
            cv2.imshow('result', dst)
            cv2.waitKey(0)
        return dst, iffall

    def video_identify(self, video_path:str) -> None:
        '''	@func: 视频识别
            @para  video_path: 视频路径
            @return: None
        '''
        cap = cv2.VideoCapture(video_path)
        fps = cap.get(cv2.CAP_PROP_FPS)
        # print(fps)
        while cap.isOpened():
            ret, frame = cap.read()
            #键盘输入空格暂停,输入q退出
            key = cv2.waitKey(1) & 0xff
            if key == ord(" "): cv2.waitKey(0)
            if key == ord("q"): break
            if not ret: break
            img, res = self.img_identify(frame, False)
            cv2.imshow('result', img)
            print(res)
            if cv2.waitKey(int(1000/fps)) == ord('q'):
                break
        cap.release()
        cv2.destroyAllWindows()

    @staticmethod
    def drawtext(image, pt1, pt2, text):
        '''	@func: 根据给出的坐标和文本,在图片上进行绘制
            @para	image: 图片数组; pt1: 左上角坐标; pt2: 右下角坐标; text: 矩形框上显示的文本,即类别信息
            @return: None
        '''
        fontFace = cv2.FONT_HERSHEY_COMPLEX_SMALL  # 字体
        # fontFace = cv2.FONT_HERSHEY_COMPLEX  # 字体
        fontScale = 1.5  # 字体大小
        line_thickness = 3  # 线条粗细
        font_thickness = 2  # 文字笔画粗细
        line_back_color = (0, 0, 255)  # 线条和文字背景颜色:红色
        font_color = (255, 255, 255)  # 文字颜色:白色

        # 绘制矩形框
        cv2.rectangle(image, pt1, pt2, color=line_back_color, thickness=line_thickness)
        # 计算文本的宽高: retval:文本的宽高; baseLine:基线与最低点之间的距离(本例未使用)
        retval, baseLine = cv2.getTextSize(text,fontFace=fontFace,fontScale=fontScale, thickness=font_thickness)
        # 计算覆盖文本的矩形框坐标
        topleft = (pt1[0], pt1[1] - retval[1]) # 基线与目标框上边缘重合(不考虑基线以下的部分)
        bottomright = (topleft[0] + retval[0], topleft[1] + retval[1])
        cv2.rectangle(image, topleft, bottomright, thickness=-1, color=line_back_color) # 绘制矩形框(填充)
        # 绘制文本
        cv2.putText(image, text, pt1, fontScale=fontScale,fontFace=fontFace, color=font_color, thickness=font_thickness)

if __name__ == '__main__':
    clf = Onnx_clf()
    import tkinter as tk
    from tkinter.filedialog import askopenfilename
    tk.Tk().withdraw() # 隐藏主窗口, 必须要用,否则会有一个小窗口
    source = askopenfilename(title="打开保存的图片或视频")
    # source = r'C:\Users\Zeoy\Desktop\YOLOData\data\IMG_568.jpg'
    if source.endswith('.jpg') or source.endswith('.png') or source.endswith('.bmp'):
        res, out = clf.img_identify(source, False)
        print(out)
        cv2.imshow('result', res)
        cv2.waitKey(0)
    elif source.endswith('.mp4') or source.endswith('.avi'):
        print('视频识别中...按q退出')
        clf.video_identify(source)
    else:
        print('不支持的文件格式')

  关于这个代码流程的一些解释:

  • 首先是调用readNet函数读取onnx模型文件

  • 然后对输入图片进行预处理。具体包括:首先需要用numpy将图片变成正方形(因为模型训练时用的就是正方形图片),不是直接拉伸,而是对短边进行填充值为0的像素,然后再调用blobFromImage函数对得到的正方形图片进行预处理,包括像素值归一化处理,设置输出图像大小,将颜色空间转换为RGB等,具体参数可以参考这篇博客。注意,这里的输出图像大小要和训练时选择的img-size参数保持一致,默认是640,同时要记录一下正方形图片相对于输出图片大小的缩放比例,即正方形边长 / 640,是一个浮点数。

  • 接下来就是图片的输入和输出,setInput函数输入预处理好的图片块,然后调用forward函数得到模型输出,这些模型输出即是圈出的目标对应的方框。

  • 上面得到的方框数量有2w多个,但并不是所有的都是目标,需要根据置信度进行选择,这里用的是numpy的花式索引,速度比循环操作大大加快。然后调用NMSBoxes非极大值抑制,得到确定的目标,然后再循环进行画框输出即可。

  • 具体内容就是读代码和注释即可理解。

参考链接文章来源地址https://www.toymoban.com/news/detail-617049.html

到了这里,关于【YOLO】目标识别模型的导出和opencv部署(三)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 基于深度学习的高精度鸟类目标检测识别系统(PyTorch+Pyside6+YOLOv5模型)

    摘要:基于深度学习的高精度鸟类目标(鹦鹉(Crested Myna)、麻雀(Eurasian Tree Sparrow)、黑头文鸟(Chestnut Munia)、白领翡翠(Collared Kingfisher)、太阳鸟(Garden Sunbird))检测识别系统可用于日常生活中或野外来检测与定位鸟类目标目标,利用深度学习算法可实现图片、视频

    2024年02月12日
    浏览(56)
  • 基于深度学习的高精度野生目标检测识别系统(PyTorch+Pyside6+YOLOv5模型)

    摘要:基于深度学习的高精度野生目标检测识别系统可用于日常生活中检测与定位野生目标目标,利用深度学习算法可实现图片、视频、摄像头等方式的野生目标目标检测识别,另外支持结果可视化与图片或视频检测结果的导出。本系统采用YOLOv5目标检测模型训练数据集,使

    2024年02月07日
    浏览(55)
  • yolov5 opencv dnn部署自己的模型

    github开源代码地址 yolov5官网还提供的dnn、tensorrt推理链接 本人使用的opencv c++ github代码,代码作者非本人,也是上面作者推荐的链接之一 如果想要尝试直接运行源码中的yolo.cpp文件和yolov5s.pt推理sample.mp4,请参考这个链接的介绍 使用github源码结合自己导出的onnx模型推理自己的

    2024年01月23日
    浏览(44)
  • 基于YOLOv5系列【n/s/m/l】模型开发构建人体手势目标检测识别分析系统

    人体手势检测识别是指通过计算机视觉和深度学习技术,自动地识别和理解人体的手势动作。这项技术可以应用于各种领域,如人机交互、虚拟现实、智能监控等。 下面是一般的人体手势检测识别流程: 数据采集:首先需要收集包含手势动作的训练数据。这些数据可以通过

    2024年02月11日
    浏览(51)
  • C++模型部署:qt+yolov5/6+onnxruntime+opencv

    作者平时主要是写 c++ 库的,界面方面了解不多,也没有发现“美”的眼镜,界面有点丑,大家多包涵。 本次介绍的项目主要是通过 cmake 构建一个 基于 c++ 语言的,以 qt 为框架的,包含 opencv 第三方库在内的,跨平台的,使用 ONNX RUNTIME 进行前向推理的 yolov5/6 演示平台。文章

    2024年02月05日
    浏览(46)
  • YOLOV5(二):将pt转为onnx模型并用opencv部署

    yolov5s 6.0自带export.py程序可将.pt转为.onnx等,只需配置需要的环境即可。 1. 安装环境 报错:NVIDIA-tensorrt安装失败! 解决:从源码安装TensorRt: ①安装CUDNN和CudaToolKit等GPU配置 ②从官网下载需要的rt版本:https://developer.nvidia.com/nvidia-tensorrt-8x-download ③解压后,将lib文件夹添加到

    2024年02月10日
    浏览(41)
  • YOLOv5目标检测学习(1):yolo系列算法的基础概念

    提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 关于深度学习目标检测,有许多概念性的东西需要先了解一下。这里主要以基于深度学习的目标检测算法的部署实现来学习。 以yolov5为例: 使用YOLOv5进行车辆和行人的目标检测通常涉及以下步骤: 数据

    2024年04月09日
    浏览(55)
  • YOLOV5-LITE实时目标检测(onnxruntime部署+opencv获取摄像头+NCNN部署)python版本和C++版本

    使用yolov5-lite自带的export.py导出onnx格式,图像大小设置320,batch 1 之后可以使用 onnxsim对模型进一步简化 onnxsim参考链接:onnxsim-让导出的onnx模型更精简_alex1801的博客-CSDN博客 这个版本的推理FPS能有11+FPS 这两处换成自己的模型和训练的类别即可:     parser.add_argument(\\\'--modelpa

    2024年02月04日
    浏览(49)
  • 模型实战(11)之win10下Opencv+CUDA部署yolov5、yolov8算法

    测试环境:AMDRH7000+RTX3050+win10+vs2-10+opencv455+cuda11.7 关于opencv470+contrib+cuda的编译,可以详见:Win10下Opencv+CUDA联合编译详细教程 本文代码同时支持 yolov5 、 yolov8 两个模型,详细过程将在文中给出, 完整代码仓库最后给出 其中,yolov8在opencv-DNN + CUDA下的效果如下: 新建VS项目,名

    2024年02月16日
    浏览(40)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包