剑指offer41.数据流中的中位数

这篇具有很好参考价值的文章主要介绍了剑指offer41.数据流中的中位数。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

剑指offer41.数据流中的中位数,剑指offer,java,算法,数据结构,leetcode

 我一开始的想法是既然要找中位数,那肯定要排序,而且这个数据结构肯定要能动态的添加数据的,肯定不能用数组,于是我想到了用优先队列,它自己会排序都不用我写,所以addNum方法直接调用就可以,但是找中位数就很麻烦,它不能根据下标访问,于是我写了一个很屎的方法,把它poll到数组里面找到中位数后,再从数组放到优先队列中,代码如下:

class MedianFinder {
    private PriorityQueue<Integer> priorityQueue;
    /** initialize your data structure here. */
    public MedianFinder() {
       this.priorityQueue = new PriorityQueue<Integer>();
    }
    
    public void addNum(int num) {
        priorityQueue.add(num);
    }
    
    public double findMedian() {
       int size = priorityQueue.size();
       int[] arr = new int[size];
       for(int i=0;i<size;i++){
           arr[i] = priorityQueue.poll();
       }
       for(int i=0;i<size;i++){
           priorityQueue.add(arr[i]);
       }
       if(size%2 != 0){
           return (double)arr[((size+1)/2) -1];
       }else{
           double res = (arr[(size/2)-1] + arr[size/2])/2.0;
           return res;
       }
    }
}

 但是它超时了,题目的测试用例非常大,我就想肯定是找中位数的时候太繁琐了,于是就想到了用LinkedList,可以通过下标获取中位数,只需要自己写一个排序,我就想到用add(int index, E element)方法,每次添加的时候找到添加的位置,这样就一直是有序的,复杂度是O(n),于是我又写了如下代码:

class MedianFinder {
    private LinkedList<Integer> list;
    /** initialize your data structure here. */
    public MedianFinder() {
       this.list = new LinkedList<Integer>();
    }
    
    public void addNum(int num) {
        int size = list.size();
        if(size == 0){
            list.add(num);
            return;
        }else{
            for(int i =0;i<size;i++){
                if(i==0 && num <= list.get(0)){
                    list.addFirst(num);
                    break;
                }else if(i==size-1 && num >= list.get(size-1)){
                        list.addLast(num);
                        break;
                }else if(num >= list.get(i) && num <= list.get(i+1)){
                    list.add(i+1, num);
                    break;
                }else{
                    continue;
                }
            }
        }
    }
    
    public double findMedian() {
         int size = list.size();
         return size%2 !=0 ? list.get(((size+1)/2)-1)*1.0 : (list.get((size/2)-1)+list.get(size/2))/2.0;
    }
}

但是tmd我没想到这也能超时,真进行了5000次的调用,然后我又试了一下用二分查找添加,不行,看题解了。题解看完我只想说一个字,妙!他也是用的优先队列,但是他用了两个优先队列,一个queMax存大于中位数的数,queMin存小于等于中位数的数,如果总数的奇数,那么中位数就是queMin的队头,如果总数是偶数那么中位数就是queMin和queMax的队头的平均值,添加的时候如果num小于等于中位数就加到queMin中,这时候新的中位数可能会小于原来的中位数,就要把queMin的对头放到queMax中,如果num大于中位数同理。

class MedianFinder {
    private PriorityQueue<Integer> queMin;
    private PriorityQueue<Integer> queMax;
    /** initialize your data structure here. */
    public MedianFinder() {
       queMin = new PriorityQueue<Integer>((a, b) -> (b - a));
       queMax = new PriorityQueue<Integer>((a, b) -> (a - b));
    }
    
    public void addNum(int num) {
        if(queMin.isEmpty() || num <= queMin.peek()){
            queMin.offer(num);
            if(queMax.size() + 1 < queMin.size()){
                queMax.offer(queMin.poll());
            }
        }else{
            queMax.offer(num);
            if(queMax.size() > queMin.size()){
                queMin.offer(queMax.poll());
            }
        }
    }
   
    public double findMedian() {
         if(queMin.size() > queMax.size()){
             return queMin.peek();
         }
         return (queMax.peek() + queMin.peek()) / 2.0;
    }
}

需要注意的是两个队列的排序方法不一样,queMin是队头最大,从大到小排,queMax是队头最小,从小到大排。所以看到两个优先队列的初始化方法是不一样的,lambda表达式中queMin的返回结果是b-a,而queMax是a-b。文章来源地址https://www.toymoban.com/news/detail-617385.html

到了这里,关于剑指offer41.数据流中的中位数的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 软件定义汽车场景中的数据流处理

    在当今快速发展的技术环境中,汽车行业正处于变革期。软件定义汽车(Software-Defined Vehicle, SDV)处于这场变革的前沿,为用户提供了无与伦比的互联、智能和数据洞察。SDV 会产生海量的数据,如何实时高效的处理这些数据成为当务之急。 本文将深入分析 SDV 数据的流处理技

    2024年02月13日
    浏览(42)
  • 数据流处理中的分布式存储:保护数据隐私和安全

    作者:禅与计算机程序设计艺术 随着数据量的爆炸式增长,如何高效地处理和存储数据成为了当前热门的研究方向。数据流处理作为一种处理数据的方法,能够在实时性、流式性和可扩展性等方面提供优势。在数据流处理中,分布式存储是保障数据隐私和安全的重要手段。本

    2024年02月16日
    浏览(38)
  • 什么是Vue的数据流(单向数据流)?如何进行数据流管理

    在Vue中,数据流是指数据的传递和管理方式。Vue采用的是单向数据流,也就是说,数据是从父组件流向子组件,子组件不能直接修改父组件的数据。本文将介绍Vue的数据流机制,以及如何进行数据流管理。 Vue的数据流机制可以分为两类:props和events。 Props 在Vue中,父组件可以

    2024年02月08日
    浏览(62)
  • 银行储蓄系统的顶层数据流图及细化数据流图

    绘制出银行储蓄系统的顶层数据流图及细化数据流图; 银行储蓄系统存、取款流程如下: 1)业务员事先录入利率信息; 2)如果是存款,储户填写存款单,业务员将存款单键入系统,系统更新储户存款信息(存款人姓名、存款人账号、电话号码、身份证号码、存款金额、存

    2024年01月17日
    浏览(48)
  • Elasticsearch:将 ILM 管理的数据流迁移到数据流生命周期

    警告 :此功能处于技术预览阶段,可能会在未来版本中更改或删除。 Elastic 将努力解决任何问题,但技术预览版中的功能不受官方 GA 功能的支持 SLA 的约束。目前的最新版本为 8.12。 在本教程中,我们将了解如何将现有数据流(data stream)从索引生命周期管理 (ILM) 迁移到数据

    2024年04月29日
    浏览(46)
  • 【Python 数据分析】描述性统计:平均数(均值)、方差、标准差、极大值、极小值、中位数、百分位数、用箱型图表示分位数

    前面讲了数据分析中的第一步:数据预处理,下面就是数据分析的其中一个重头戏:描述性统计,具体内容为: 平均数(均值)、方差、标准差、极大值、极小值、中位数、百分位数、用箱型图表示分位数 。 关键方法 含义 .mean() 求均值 .var() 求方差 .std() 求标准差 .max() 求极

    2024年01月21日
    浏览(46)
  • 数据流图(DFD)

    数据流图是用于表示系统逻辑模型的一种工具。从数据 传递和加工 的角度,以图形的方式描述数据在系统中流动和处理的过程 数据字典是指对数据的数据项、数据结构、数据流、数据存储、处理逻辑等进行定义和描述,其目的是 对数据流图中的各个元素做出详细的说明 ,

    2024年02月04日
    浏览(51)
  • postman 数据流请求

    备注: Postman version : Version 9.21.3 Windows 版本 1.修改headers 2.Body 部分 选择raw 格式数据 3.最后执行请求

    2024年02月11日
    浏览(63)
  • Flink数据流

    官网介绍 Apache Flink 是一个框架和分布式处理引擎,用于对无界和有界数据流进行有状态计算。Flink 被设计为在所有常见的集群环境中运行,以内存中的速度和任何规模执行计算。 1.无限流有一个开始,但没有定义的结束。它们不会在生成数据时终止并提供数据。必须连续处

    2024年02月17日
    浏览(48)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包