NVIDIA驱动、CUDA、cuDNN、Torch、Tensorflow对应版本一文搞明白

这篇具有很好参考价值的文章主要介绍了NVIDIA驱动、CUDA、cuDNN、Torch、Tensorflow对应版本一文搞明白。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

CUDA下载:CUDA Toolkit Archive | NVIDIA Developer

cuDNN下载:cuDNN Archive | NVIDIA Developer

1.NVIDIA驱动和CUDA版本对应

 2.CUDA和cuDNN版本对应

 3.Tensorflow和CUDA、cuDNN版本对应(经过官方测试的构建配置)

3.1 GPU

 3.2 CPU

4.pytorch和CUDA对应


CUDA下载:CUDA Toolkit Archive | NVIDIA Developer

cuDNN下载:cuDNN Archive | NVIDIA Developer

1.NVIDIA驱动和CUDA版本对应

网址:CUDA 12.1 Update 1 Release Notes

nvidia驱动对应的cuda版本,tensorflow,python,深度学习

2.CUDA和cuDNN版本对应

网址:cuDNN Archive | NVIDIA Developer

nvidia驱动对应的cuda版本,tensorflow,python,深度学习

3.Tensorflow和CUDA、cuDNN版本对应(经过官方测试的构建配置)

网址:在 Windows 环境中从源代码构建  |  TensorFlow

3.1 GPU

nvidia驱动对应的cuda版本,tensorflow,python,深度学习

 3.2 CPU

nvidia驱动对应的cuda版本,tensorflow,python,深度学习

4.pytorch和CUDA对应

网址:Previous PyTorch Versions | PyTorch

文字过多,不再复制。文章来源地址https://www.toymoban.com/news/detail-617711.html

到了这里,关于NVIDIA驱动、CUDA、cuDNN、Torch、Tensorflow对应版本一文搞明白的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 英伟达(NVIDIA)显卡、驱动版本与cuda版本对应关系

    英伟达官方网址: Release Notes :: CUDA Toolkit Documentation (nvidia.com) https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html 根据官方网址最新的对应关系如下:     查看自己的显卡驱动版本使用命令:      如果想要查看自己的显卡能安装的最新驱动,可以在这个网站查找: NVIDIA G

    2024年02月11日
    浏览(55)
  • Ubuntu 20.04 LTS 系统下 安装Nvidia 显卡驱动、CUDA、cuDNN, 并可进行CUDA版本切换

    因为做深度学习的研究项目,为全新机器在Ubuntu 20.04 LTS 系统下 安装Nvidia 显卡驱动、Cuda、Cudnn。并进行CUDA版本切换 成功安装完成了,写个记录。 步骤一: 安装更新软件列表和依赖项 在安装Nvidia显卡驱动之前,需要更新软件列表和必要的依赖项。 步骤二: 查看GPU型号,并

    2024年02月13日
    浏览(68)
  • 最新版ubuntu22.04安装NVIDIA显卡驱动以及CUDA、CUDNN,和安装驱动gcc版本问题解决。

    1.驱动安装参考下述链接 1.1 NVIDIA显卡驱动、 CUDA 的安装参考这个博主的具体安装步骤,但是最后一步的 cudnn 的安装参考另一个博主,见链接。 1.2 可以选择最新版本的驱动,需要在官网去找最新的版本对应。 2.最新版本我遇到的错误以及解决方法 2.1.在进入tty1界面后ubuntu安装

    2024年04月24日
    浏览(61)
  • 【Ubuntu20.04安装Nvidia驱动、CUDA和CUDNN】

    官网链接:https://www.nvidia.cn/Download/index.aspx?lang=cn 或者https://www.nvidia.cn/geforce/drivers/ 注 :Ubuntu系统是不区别显卡类别的显卡驱动,一般来说,下载最新版本的驱动即可;Win系统是需要根据显卡来选择具体的驱动版本。 1.2.1 NVIDIA 驱动与 Nouveau 驱动不兼容 由于系统当前正在使用

    2024年02月11日
    浏览(77)
  • 笔记--Ubuntu20.04安装Nvidia驱动、CUDA Toolkit和CUDA CuDNN

    目录 1--安装Nvidia驱动 2--安装CUDA 2-1--禁用nouveau 2-2--选择CUDA Toolkit 2-3--下载和安装CUDA Toolkit 2-4--配置环境变量 2-5--测试是否安装成功: 3--安装CUDA CuDNN 4--测试pytorch能否使用Cuda ① 查看可安装的Nvidia驱动版本: ② 安装相应版本的Nvidia驱动: 博主这里选择的是第一个,也可以安

    2024年02月02日
    浏览(66)
  • Ubuntu 22.04 安装Nvidia显卡驱动、CUDA、cudnn

    GPU做深度学习比CPU要快很多倍,用Ubuntu跑也有一定的优势,但是安装Nvidia驱动有很多坑 Ubuntu版本:22.04.3 LTS 分区: /boot 分配 1G ,剩下都分给根目录 / 显卡:GTX 1050 Ti 坑1:用Ubuntu自带的 Additional Drivers可能会出问题,应该从官网下载驱动文件 坑2:用deb文件安装可能会出问题,

    2024年02月08日
    浏览(60)
  • anaconda:安装cuda和对应版本的cudnn

    复现别人论文的时候经常遇到不同的cuda版本,可以使用anaconda创建虚拟环境,并在不同的虚拟环境中配置对应的cuda版本 Anaconda多个python版本(python2.7 python3.8) (1)安装cuda10.2 在conda命令行下输入: conda search cudatoolkit conda install cudatoolkit==10.2.89 (2)安装cuda10.2对应的cudnn 在

    2023年04月08日
    浏览(59)
  • Ubuntu 20.04 安装NVIDIA显卡驱动+cuda 11.7+cudnn 8.4

    参考: https://zhuanlan.zhihu.com/p/59618999 https://blog.csdn.net/linhai1028/article/details/79445722/ Windows+Ubuntu从双系统安装到CUDA cuDNN docker 配置K21 https://blog.csdn.net/qq_45831128/article/details/127060475 https://blog.csdn.net/kunhe0512/article/details/125061911 Ubuntu 20.04 英伟达 RTX 3050 Ti 显卡 1)Ubuntu下查看Nvidia显卡的

    2023年04月10日
    浏览(58)
  • ubuntu安装cuda-10.2以及对应版本的cudnn

    下面开始进行Cuda的安装,开始之前我们可以手动更换一下源:这里推荐阿里云的源,如果不懂的自行百度。同时要先安装显卡驱动。 换完源后: 更新一下源 开始安装前再次却一下ubuntu版本:打开终端ctrl+alt+t 输出如下结果: 安装ubuntu-drivers,我们可以通过ubuntu-drivers检测你的

    2024年02月02日
    浏览(59)
  • 【ubuntu环境配置】超详细ubuntu20.04/22.04安装nvidia驱动/CUDA/cudnn

    nvidia显卡驱动安装方式有三种:使用ubuntu附加驱动的方式;使用命令行方式安装;使用.run文件的方式进行安装, 点击菜单中的Additional Drivers选择适合的驱动版本进行安装,该方法最方便快捷(但有时会翻车) 更新所有的软件包 安装显卡驱动 详见我的另一篇博客Ubunut20.04/2

    2024年01月22日
    浏览(75)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包