高效协作处理缓存清理需求:生产者-消费者模式助力多模块缓存管理

这篇具有很好参考价值的文章主要介绍了高效协作处理缓存清理需求:生产者-消费者模式助力多模块缓存管理。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

在现代应用系统中,缓存是提高性能和减少数据库负载的重要手段之一。然而,缓存的数据在某些情况下可能会过期或者变得无效,因此需要及时进行清理。在复杂的应用系统中,可能有多个系统、多个模块产生缓存清理需求,而这些系统、模块之间的清理任务需要高效的协作,以避免数据竞争和资源浪费的问题。

本文将介绍一种高效处理多模块缓存清理需求的方案,通过使用Redis消息队列,采用生产者-消费者模式,实现了多个系统、多个模块的消息生产和消费任务的合理协作。在这个方案中,多个系统、多个模块可以同时生产清理缓存的消息,消费者定期获取并合并这些消息后,通过多线程进行缓存清理,从而达到高效处理的目的。

生产者-消费者模式

生产者-消费者模式是一种经典的多线程设计模式,用于解决多个生产者和消费者之间的协作问题。生产者负责生成数据,并将其放入共享缓冲区,而消费者则负责从缓冲区中取出数据并进行处理。这种模式的目标是确保生产者和消费者之间的有效沟通和数据交换,从而避免竞态条件和数据不一致问题。

方案介绍

高效协作处理缓存清理需求:生产者-消费者模式助力多模块缓存管理,缓存,设计模式

Redis是一种高性能的内存数据库,同时也是一个强大的消息中间件。Redis支持多种数据结构,包括List(列表)和Queue(队列),这些数据结构可以用于实现消息队列的功能。

在Redis中,多个系统、多个模块可以将清理缓存的消息作为生产者生产,并将这些消息添加到一个特定的Queue中。而缓存清理服务则定期从这个Queue中获取消息,进行合并后再多个消费者进行缓存清理操作。这种模式称为生产者-消费者模式,它实现了生产者和消费者的解耦,使得多个系统、多个模块之间可以独立进行消息的生产,由缓存清理服务统一多线程进行消息的消费,从而提高系统的灵活性和可维护性,使得业务系统于消息缓存系统之间不存在耦合关系。

第一步: 初始化Redis连接和消息队列

首先,需要在应用程序中初始化Redis连接,以便于生产者和消费者能够连接到Redis数据库。同时,创建一个消息队列,用于存储多个系统、多个模块产生的清理缓存的消息。

第二步: 系统或模块生产消息

每个模块可以根据自己的清理缓存需求,产生对应的清理缓存消息,并将消息添加到Redis的消息队列中。

MsgProduct

import lombok.extern.slf4j.Slf4j;
import org.springframework.stereotype.Service;

import javax.annotation.Resource;
import java.util.Map;
import java.util.Set;

@Service
@Slf4j
public class MsgProduct {

    private static final String KEY= "xj_test_queue";
    @Resource
    private RedissonCache redissonCache;

    public boolean msgAdd(Map<String, Set<String>> params){
        //生产消息
        return redissonCache.cacheAdd(KEY,params);
    }
}

第三步: 消费者定期获取并合并消息,多线程缓存清理

消费者定期从Redis消息队列中获取缓存清理消息。获取到的消息可以按照namespace进行分类合并,以便后续多线程消费时能够分别处理不同模块的缓存清理任务。

MsgConsumer

import lombok.extern.slf4j.Slf4j;
import org.apache.commons.lang3.ObjectUtils;
import org.springframework.stereotype.Service;

import javax.annotation.Resource;
import java.util.*;
import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;

@Service
@Slf4j
public class MsgConsumer {
    private static final String KEY= "xj_test_queue";
    @Resource
    private RedissonCache redissonCache;

    public void poll(){
        Map<String, Set<String>> params = new LinkedHashMap<>();
        Map<String, Set<String>> msgMap = redissonCache.cachePoll(KEY);
        int batchSize = 500;

        String namespace;
        Set<String> msgSet;
        Set<String> mergedSet;

        while (batchSize > 0 && !ObjectUtils.isEmpty(msgMap)) {
            // 合并消息
            for (Map.Entry<String, Set<String>> entry : msgMap.entrySet()) {
                namespace = entry.getKey();
                msgSet = entry.getValue();
                mergedSet = params.getOrDefault(namespace, new HashSet<>());
                mergedSet.addAll(msgSet);
                params.put(namespace, mergedSet);
            }
            batchSize--;
            msgMap = redissonCache.cachePoll(KEY);
        }

        // 创建线程池
        ThreadPoolExecutor executor = new ThreadPoolExecutor(
                10,
                15,
                60L,
                TimeUnit.MILLISECONDS,
                new ArrayBlockingQueue<>(10)
        );
        for (Map.Entry<String, Set<String>> entry : params.entrySet()) {
            executor.execute(()-> this.doFlush(entry.getKey(),entry.getValue()) );
        }

    }

    public void doFlush(String namespace,Set<String> provinces){
        try {
            //执行缓存清理逻辑
            log.info("清理缓存的接口编码为:{},省份编码为:{}",namespace,provinces);
        }catch (Exception e){
            //缓存清理失败处理逻辑
            log.error("清理缓存失败",e);
        }

    }

}

优势与收益

采用基于Redis消息队列的生产者-消费者模式,我们成功解决了多个模块缓存清理的高效协作问题。这种模式的优势在于:

  1. 提高性能与并发处理能力: 多线程并发消费消息,加速缓存清理任务的执行,提高系统的整体性能。

  2. 灵活扩展: 不同模块可以独立生产和消费消息,系统的可扩展性大大增强。

  3. 数据一致性: 通过合理的消息合并策略,保证缓存清理任务的数据一致性。

  4. 资源节约: 避免资源浪费和重复清理,提高系统的资源利用率。

结语

在复杂的应用系统中,多个系统、多个模块可能会同时产生缓存清理需求。基于Redis消息队列的生产者-消费者模式为这种场景提供了一种高效协作处理方案。通过生产者生产消息、消费者定期获取合并消息并进行多线程消费,系统可以高效处理缓存清理任务,保证数据的一致性和并发安全性。这种设计模式在当今大数据和高并发的背景下尤其重要,对于提升系统性能和稳定性具有积极意义。文章来源地址https://www.toymoban.com/news/detail-617877.html

到了这里,关于高效协作处理缓存清理需求:生产者-消费者模式助力多模块缓存管理的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • (三)Kafka 生产者

    创建一个 ProducerRecord 对象,需要包含目标主题和要发送的内容,还可以指定键、分区、时间戳或标头。 在发送 ProducerRecord 对象时,生产者需要先把键和值对象序列化成字节数组,这样才能在网络上传输。 如果没有显式地指定分区,那么数据将被传给分区器。分区器通常会基

    2024年02月09日
    浏览(38)
  • Kafka 生产者

    目录 一、kafka生产者原理 二、kafka异步发送 配置kafka 创建对象,发送数据 带回调函数的异步发送 同步发送   三、kafka生产者分区 分区策略 指定分区:  指定key: 什么都不指定: 自定义分区器 四、生产者提高吞吐量 五、数据的可靠性 ACK应答级别 数据完全可靠条件 可靠性

    2023年04月15日
    浏览(43)
  • 「Kafka」生产者篇

    在消息发送的过程中,涉及到了 两个线程 —— main 线程 和 Sender 线程 。 在 main 线程中创建了 一个 双端队列 RecordAccumulator 。 main线程将消息发送给RecordAccumulator,Sender线程不断从 RecordAccumulator 中拉取消息发送到 Kafka Broker。 main线程创建 Producer 对象,调用 send 函数发送消息,

    2024年01月19日
    浏览(39)
  • Kafka-生产者

    Kafka在实际应用中,经常被用作高性能、可扩展的消息中间件。 Kafka自定义了一套网络协议,只要遵守这套协议的格式,就可以向Kafka发送消息,也可以从Kafka中拉取消息。 在实践生产过程中,一套API封装良好、灵活易用的客户端可以避免开发人员重复劳动,提高开发效率,也

    2024年01月20日
    浏览(34)
  • Kafka(生产者)

    目 前 企 业 中 比 较 常 见 的 消 息 队 列 产 品 主 要 有 Kafka(在大数据场景主要采用 Kafka 作为消息队列。) ActiveMQ RabbitMQ RocketMQ 1.1.1 传统消息队列的应用场景 传统的消息队列的主要应用场景包括: 缓存/消峰 、 解耦 和 异步通信 。 缓冲/消峰: 有助于控制和优化数据流经过

    2024年02月11日
    浏览(44)
  • 三、Kafka生产者

    1 发送原理 在消息发送的过程中,涉及到了两个线程——main 线程和 Sender 线程。在 main 线程中创建了一个双端队列 RecordAccumulator。main 线程将消息发送给 RecordAccumulator,Sender 线程不断从 RecordAccumulator 中拉取消息发送到 Kafka Broker 【RecordAccumulator缓冲的结构: 每一个分区对应一

    2024年02月12日
    浏览(37)
  • Kafka生产者

    1.acks 如果acks=0,生产者在成功写入消息之前不会等待任何来自服务器的响应。 缺点:如果当中出现了问题,导致服务器没有收到消息,那么生产者就无从得知,消息就丢失了 优点:因为生产者不需要等待服务器的响应,所有他可以以网络能够支持的最大速度发送消息,从而

    2024年01月19日
    浏览(36)
  • 【Kafka】高级特性:生产者

    整个流程如下: Producer创建时,会创建一个Sender线程并设置为守护线程。 生产消息时,内部其实是异步流程;生产的消息先经过拦截器-序列化器-分区器,然后将消息缓存在缓冲区(该缓冲区也是在Producer创建时创建)。 批次发送的条件为:缓冲区数据大小达到batch.size或者

    2024年01月24日
    浏览(35)
  • Kafka生产者相关概念

    Kafka中消息是以topic进行分类的,Producer生产消息,Consumer消费消息,都是面向topic的。 Topic是逻辑上的概念,Partition是物理上的概念,每个Partition对应着一个log文件,该log文件中存储的就是producer生产的数据。 写入方式 producer采用推(push)模式将消息发布到broker,每条消息都

    2024年04月13日
    浏览(34)
  • 生产者-消费者模型

    目录 1、生产者-消费者模型是什么 2、Java中的实现 3、应用于消息队列 3.1 引入依赖 3.2 rabbitmq网站新建队列queue 3.3 模块中配置application.yml 3.4 生产者实现类 3.5 单元测试,发送msg到rabbitmq的队列(my_simple_queue) 3.6 消费者实现类 3.7 从rabbitmq队列(my_simple_queue)消费数据 3.8 队列的配

    2024年02月06日
    浏览(39)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包