About Machine Learning ( just a introducation :-)

这篇具有很好参考价值的文章主要介绍了About Machine Learning ( just a introducation :-)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

well,so I finally demind to use English to complete my blog whose context is related to Machine learing. Because my English is so poor and I want to get a better English skill. On the other hand, in order to emhance my understudying of machine and deep learning,I will make a effect to write every blog which is about AI in English. If this decision causes any confuse and discomfort ,please give me a feedback in the comments.

What is Machine learning?

so,in a word, ''make Machine to learn how to solve a problem".

In the past , people used to solve diffcult problems by progammed code. We should collect dataset , find same data point and group them, design a algorithms,analysis cost in time or space.........in result, computer only needs to translate high language to machine language and count a result , while we were studying hardly.

In Machine learing, the roles is revolved. Making computer solve the qusetion without programmed codes, is the target of us.

it is very abstract,I know,becasue ml`s basic is.......

mathematic

Main Machine learning algorithms

In the first blog , I dont`t want to explain what is ai and how to start machine learning,even through many of you like me, need a paper to fill you science experiences.I understand you.

but, before the first step,let's learn two kinds of the widest being used and rapidest advancement algorithms:

  • supervise learning
  • unsupervise learning

supervise learning

definity:computer learns by being given "right answers",then outputs  a target "y" with target "x" that computer never sees it.

Simply , supervise means use the dataset to predict 'y' with a new variable "x" .

Maybe it is shill vary abstract.Now I will show you two supervise learning algorithms: regression(回归) and classification(分类)

REGRESSION

Let's set a scene:

you are a real estate agent(房屋中介).you customer , MaLeJi want to sell his real estate in NingBo and HangZhou. He comes here and consult you.

you have some records:

About Machine Learning ( just a introducation :-),机器学习,人工智能

 This table shows that house has different price with different size in feets. But MaLeJi's house size is not match any records in this table.

In this situation,you should recall “regression”,and use it to fit a model. This model will predict the price with a new 'input'.

For example ,you can fit a linear function,like this

About Machine Learning ( just a introducation :-),机器学习,人工智能

 Input you new data, after the training from early dataset.you will get a predict value "y"

this is a example case of regression.by the way,it is a linear model.Exceptint it,we can use other model to fit it ( such as curve )

CLASSIFICATION

When I read a book called 《算法图解》, I get a simple example.

you are a storer(sell fruit), you have a abundant experience of recognize apple and tomato.

It is simple to divide them by size. you know the size range of apple and tomato.

OK,in this process,you built a classification model. when a fruit is passed in you hand,you can judge it quickly.  look like this:

About Machine Learning ( just a introducation :-),机器学习,人工智能

 Unlike the regression, classifiaction only get small number of outputs.Like this example,we put new point in X-axis.Maybe the point has a closer distance to point group repesenting apple , then this item is a apple.

What‘s more , the dimension standards of classifition is not unique.

unsupervise learning

unsupervise means that computer only need input,not output 'y'.Algorithm has to find the structure in dataset.

In a word : no output , just to find data structure.

let's see a example: clustering

as a front-end programmer,I always have to face to the browers search engine(by the way ,I hate it......).In a searching , you will see some similar topics while searching a topic.

such as this: if you search 'panda' and click

About Machine Learning ( just a introducation :-),机器学习,人工智能

there are many relative topic.

clustering is a kind of unsuperivse learning.computer find similar attirtudes from dataset,and group them which has similar attritude to same cluster.文章来源地址https://www.toymoban.com/news/detail-617991.html

some term

到了这里,关于About Machine Learning ( just a introducation :-)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 应用机器学习的建议 (Advice for Applying Machine Learning)

    问题: 假如,在你得到你的学习参数以后,如果你要将你的假设函数放到一组 新的房屋样本上进行测试,假如说你发现在预测房价时产生了巨大的误差,现在你的问题是要想改进这个算法,接下来应该怎么办? 解决思路: 一种办法是使用更多的训练样本。具体来讲,也许你

    2024年01月25日
    浏览(45)
  • 机器学习中的 Transformation Pipelines(Machine Learning 研习之十)

    Transformation Pipelines 有许多数据转换步骤需要以正确的顺序执行。幸运的是, Scikit-Learn 提供了 Pipeline 类来帮助处理这样的转换序列。下面是一个用于数值属性的小管道,它首先对输入特性进行归并,然后对输入特性进行缩放: Pipeline 构造函数采用名称/估算器对(2元组)的列表,

    2024年02月04日
    浏览(42)
  • 机器学习在网络安全领域的应用 Demystifying Cybersecurity with Machine Learning

    作者:禅与计算机程序设计艺术 什么是机器学习(Machine Learning)?又是如何应用在网络安全领域呢?本文将详细阐述其定义、分类及历史沿革,同时介绍一些机器学习的基本概念和技术,帮助企业界更好地理解和掌握机器学习在网络安全领域的应用。通过相关案例实践,全

    2024年02月06日
    浏览(42)
  • Azure Machine Learning - 聊天机器人构建

    本文介绍如何部署和运行适用于 Python 的企业聊天应用示例。 此示例使用 Python、Azure OpenAI 服务和 Azure AI 搜索中的检索扩充生成(RAG)实现聊天应用,以获取虚构公司员工福利的解答。 关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理

    2024年01月19日
    浏览(53)
  • [machine Learning]强化学习

    强化学习和前面提到的几种预测模型都不一样,reinforcement learning更多时候使用在控制一些东西上,在算法的本质上很接近我们曾经学过的DFS求最短路径. 强化学习经常用在一些游戏ai的训练,以及一些比如火星登陆器,月球登陆器等等工程领域,强化学习的内容很简单,本质就是获取

    2024年02月09日
    浏览(42)
  • [Machine Learning] 领域适应和迁移学习

    在机器学习中,我们的目标是找到一个假设或模型,它可以很好地描述或预测数据。当我们基于训练集训练模型时,我们的目的是让模型能够捕获到数据中的主要模式。然而,为了确保模型不仅仅是对训练数据进行记忆,而是真正理解了数据的结构,我们需要在测试集上评估

    2024年02月08日
    浏览(55)
  • 【Machine Learning 系列】一文带你详解什么是强化学习(Reinforcement Learning)

    机器学习主要分为三类:有监督学习、无监督学习和强化学习。在本文中,我们将介绍强化学习(Reinforcement Learning)的原理、常见算法和应用领域。 强化学习(Reinforcement Learning)是机器学习中一种重要的学习范式,其目标是通过与环境的交互来学习如何做出最优的决策。 强化

    2024年02月14日
    浏览(53)
  • [Machine Learning][Part 8]神经网络的学习训练过程

    目录 训练过程 一、建立模型: 二、建立损失函数 J(w,b): 三、寻找最小损失函数的(w,b)组合 为什么需要激活函数  激活函数种类 二分法逻辑回归模型 线性回归模型 回归模型 根据需求建立模型,从前面神经网络的结果可以知道,每一层都有若干个模型在运行,因此建立神经网

    2024年02月05日
    浏览(52)
  • Introducing Language Guidance in Prompt-based Continual Learning

    本文是LLM系列文章,针对《Introducing Language Guidance in Prompt-based Continual Learning》的翻译。 持续学习旨在学习一系列任务的单一模型,而无需访问以前任务的数据。该领域最大的挑战仍然是灾难性的遗忘:早期任务的可见类的性能损失。一些现有的方法依赖于昂贵的重放缓冲区

    2024年02月09日
    浏览(57)
  • (转载)极限学习机(extreme learning machine, ELM)的回归拟合及分类(matlab实现)

            单隐含层前馈神经网络(single-hidden layer feedforward neural network,SLFN)以其良好的学习能力在许多领域中得到了广泛的应用。然而,传统的学习算法(如BP算法等)固有的一些缺点,成为制约其发展的主要瓶颈。前馈神经网络大多采用梯度下降方法,该方法主要存在以下几个

    2024年02月13日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包