【机器学习】Cost Function

这篇具有很好参考价值的文章主要介绍了【机器学习】Cost Function。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


首先,导入所需的库:
import numpy as np
%matplotlib widget
import matplotlib.pyplot as plt
from lab_utils_uni import plt_intuition, plt_stationary, plt_update_onclick, soup_bowl
plt.style.use('./deeplearning.mplstyle')

1、计算 cost

在这里,术语 ‘cost’ 是衡量模型预测房屋目标价格的程度的指标。

具有一个变量的 cost 计算公式为
J ( w , b ) = 1 2 m ∑ i = 0 m − 1 ( f w , b ( x ( i ) ) − y ( i ) ) 2 (1) J(w,b) = \frac{1}{2m} \sum\limits_{i = 0}^{m-1} (f_{w,b}(x^{(i)}) - y^{(i)})^2 \tag{1} J(w,b)=2m1i=0m1(fw,b(x(i))y(i))2(1)

其中,
f w , b ( x ( i ) ) = w x ( i ) + b (2) f_{w,b}(x^{(i)}) = wx^{(i)} + b \tag{2} fw,b(x(i))=wx(i)+b(2)

  • f w , b ( x ( i ) ) f_{w,b}(x^{(i)}) fw,b(x(i)) 是使用参数 w , b w,b w,b 对样例 i i i 的预测。
  • ( f w , b ( x ( i ) ) − y ( i ) ) 2 (f_{w,b}(x^{(i)}) -y^{(i)})^2 (fw,b(x(i))y(i))2 是目标值和预测值之间的平方差。
  • m m m 个样例的平方差进行相加,并除以 2m 得到 cost, 即 J ( w , b ) J(w,b) J(w,b).

下面的代码通过循环每个样例来计算 cost。

def compute_cost(x, y, w, b): 
    """
    Computes the cost function for linear regression.
    
    Args:
      x (ndarray (m,)): Data, m examples 
      y (ndarray (m,)): target values
      w,b (scalar)    : model parameters  
    
    Returns
        total_cost (float): The cost of using w,b as the parameters for linear regression
               to fit the data points in x and y
    """
    # number of training examples
    m = x.shape[0] 
    
    cost_sum = 0 
    for i in range(m): 
        f_wb = w * x[i] + b   
        cost = (f_wb - y[i]) ** 2  
        cost_sum = cost_sum + cost  
    total_cost = (1 / (2 * m)) * cost_sum  

    return total_cost

2、cost 函数的直观理解

我们的目标是找到一个模型 f w , b ( x ) = w x + b f_{w,b}(x) = wx + b fw,b(x)=wx+b,其中 w w w b b b 是参数,用于准确预测给定输入 x x x 的房屋价格。

上述 cost 计算公式(1)显示,如果可以选择 w w w b b b,使得预测值 f w , b ( x ) f_{w,b}(x) fw,b(x) 与目标值 y y y 相匹配,那么 ( f w , b ( x ( i ) ) − y ( i ) ) 2 (f_{w,b}(x^{(i)}) - y^{(i)})^2 (fw,b(x(i))y(i))2 项将为零,cost 将被最小化。

在之前的博客中,我们已经确定 b = 100 b=100 b=100 是一个最优解,所以让我们将 b b b 设为 100,并专注于 w w w

plt_intuition(x_train,y_train)

【机器学习】Cost Function,机器学习,机器学习,线性回归,人工智能

从图中可以就看出:

  • 当 𝑤=200 时,cost 被最小化,这与之前博客的结果相匹配。
  • 因为在 cost 计算公式中,目标值与预测值之间的差异被平方,所以当 𝑤 太大或太小时,cost 会迅速增加。
  • 使用通过最小化 cost 选择的 𝑤 和 𝑏 值得到的直线与数据完美拟合。

3、cost 可视化

我们可以通过绘制3D图或使用等高线图来观察 cost 如何随着同时改变 wb 而变化。

首先,定义更大的数据集

x_train = np.array([1.0, 1.7, 2.0, 2.5, 3.0, 3.2])
y_train = np.array([250, 300, 480,  430,   630, 730,])
plt.close('all') 
fig, ax, dyn_items = plt_stationary(x_train, y_train)
updater = plt_update_onclick(fig, ax, x_train, y_train, dyn_items)

【机器学习】Cost Function,机器学习,机器学习,线性回归,人工智能
【机器学习】Cost Function,机器学习,机器学习,线性回归,人工智能

注意,因为我们的训练样例不在一条直线上,所以最小化 cost 不是0。

cost 函数对损失进行平方的事实确保了“误差曲面”呈现凸形,就像一个碗一样。它总会有一个通过在所有维度上追随梯度可以到达的最小值点。在之前的图中,由于 w w w b b b 维度的尺度不同,这很难被察觉。下图中的 w w w b b b 是对称的。

soup_bowl()

【机器学习】Cost Function,机器学习,机器学习,线性回归,人工智能

总结

  • cost 计算公式提供了衡量预测与训练数据匹配程度的指标。
  • 最小化 cost 可以提供参数 w w w b b b 的最优值。

附录

lab_utils_common.py源码:

""" 
lab_utils_common.py
    functions common to all optional labs, Course 1, Week 2 
"""

import numpy as np
import matplotlib.pyplot as plt

plt.style.use('./deeplearning.mplstyle')
dlblue = '#0096ff'; dlorange = '#FF9300'; dldarkred='#C00000'; dlmagenta='#FF40FF'; dlpurple='#7030A0';
dlcolors = [dlblue, dlorange, dldarkred, dlmagenta, dlpurple]
dlc = dict(dlblue = '#0096ff', dlorange = '#FF9300', dldarkred='#C00000', dlmagenta='#FF40FF', dlpurple='#7030A0')


##########################################################
# Regression Routines
##########################################################

#Function to calculate the cost
def compute_cost_matrix(X, y, w, b, verbose=False):
    """
    Computes the gradient for linear regression
     Args:
      X (ndarray (m,n)): Data, m examples with n features
      y (ndarray (m,)) : target values
      w (ndarray (n,)) : model parameters  
      b (scalar)       : model parameter
      verbose : (Boolean) If true, print out intermediate value f_wb
    Returns
      cost: (scalar)
    """
    m = X.shape[0]

    # calculate f_wb for all examples.
    f_wb = X @ w + b
    # calculate cost
    total_cost = (1/(2*m)) * np.sum((f_wb-y)**2)

    if verbose: print("f_wb:")
    if verbose: print(f_wb)

    return total_cost

def compute_gradient_matrix(X, y, w, b):
    """
    Computes the gradient for linear regression

    Args:
      X (ndarray (m,n)): Data, m examples with n features
      y (ndarray (m,)) : target values
      w (ndarray (n,)) : model parameters  
      b (scalar)       : model parameter
    Returns
      dj_dw (ndarray (n,1)): The gradient of the cost w.r.t. the parameters w.
      dj_db (scalar):        The gradient of the cost w.r.t. the parameter b.

    """
    m,n = X.shape
    f_wb = X @ w + b
    e   = f_wb - y
    dj_dw  = (1/m) * (X.T @ e)
    dj_db  = (1/m) * np.sum(e)

    return dj_db,dj_dw


# Loop version of multi-variable compute_cost
def compute_cost(X, y, w, b):
    """
    compute cost
    Args:
      X (ndarray (m,n)): Data, m examples with n features
      y (ndarray (m,)) : target values
      w (ndarray (n,)) : model parameters  
      b (scalar)       : model parameter
    Returns
      cost (scalar)    : cost
    """
    m = X.shape[0]
    cost = 0.0
    for i in range(m):
        f_wb_i = np.dot(X[i],w) + b           #(n,)(n,)=scalar
        cost = cost + (f_wb_i - y[i])**2
    cost = cost/(2*m)
    return cost 

def compute_gradient(X, y, w, b):
    """
    Computes the gradient for linear regression
    Args:
      X (ndarray (m,n)): Data, m examples with n features
      y (ndarray (m,)) : target values
      w (ndarray (n,)) : model parameters  
      b (scalar)       : model parameter
    Returns
      dj_dw (ndarray Shape (n,)): The gradient of the cost w.r.t. the parameters w.
      dj_db (scalar):             The gradient of the cost w.r.t. the parameter b.
    """
    m,n = X.shape           #(number of examples, number of features)
    dj_dw = np.zeros((n,))
    dj_db = 0.

    for i in range(m):
        err = (np.dot(X[i], w) + b) - y[i]
        for j in range(n):
            dj_dw[j] = dj_dw[j] + err * X[i,j]
        dj_db = dj_db + err
    dj_dw = dj_dw/m
    dj_db = dj_db/m

    return dj_db,dj_dw

lab_utils_uni.py 源码:文章来源地址https://www.toymoban.com/news/detail-618150.html

""" 
lab_utils_uni.py
    routines used in Course 1, Week2, labs1-3 dealing with single variables (univariate)
"""
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.ticker import MaxNLocator
from matplotlib.gridspec import GridSpec
from matplotlib.colors import LinearSegmentedColormap
from ipywidgets import interact
from lab_utils_common import compute_cost
from lab_utils_common import dlblue, dlorange, dldarkred, dlmagenta, dlpurple, dlcolors

plt.style.use('./deeplearning.mplstyle')
n_bin = 5
dlcm = LinearSegmentedColormap.from_list(
        'dl_map', dlcolors, N=n_bin)

##########################################################
# Plotting Routines
##########################################################

def plt_house_x(X, y,f_wb=None, ax=None):
    ''' plot house with aXis '''
    if not ax:
        fig, ax = plt.subplots(1,1)
    ax.scatter(X, y, marker='x', c='r', label="Actual Value")

    ax.set_title("Housing Prices")
    ax.set_ylabel('Price (in 1000s of dollars)')
    ax.set_xlabel(f'Size (1000 sqft)')
    if f_wb is not None:
        ax.plot(X, f_wb,  c=dlblue, label="Our Prediction")
    ax.legend()


def mk_cost_lines(x,y,w,b, ax):
    ''' makes vertical cost lines'''
    cstr = "cost = (1/m)*("
    ctot = 0
    label = 'cost for point'
    addedbreak = False
    for p in zip(x,y):
        f_wb_p = w*p[0]+b
        c_p = ((f_wb_p - p[1])**2)/2
        c_p_txt = c_p
        ax.vlines(p[0], p[1],f_wb_p, lw=3, color=dlpurple, ls='dotted', label=label)
        label='' #just one
        cxy = [p[0], p[1] + (f_wb_p-p[1])/2]
        ax.annotate(f'{c_p_txt:0.0f}', xy=cxy, xycoords='data',color=dlpurple,
            xytext=(5, 0), textcoords='offset points')
        cstr += f"{c_p_txt:0.0f} +"
        if len(cstr) > 38 and addedbreak is False:
            cstr += "\n"
            addedbreak = True
        ctot += c_p
    ctot = ctot/(len(x))
    cstr = cstr[:-1] + f") = {ctot:0.0f}"
    ax.text(0.15,0.02,cstr, transform=ax.transAxes, color=dlpurple)

##########
# Cost lab
##########


def plt_intuition(x_train, y_train):

    w_range = np.array([200-200,200+200])
    tmp_b = 100

    w_array = np.arange(*w_range, 5)
    cost = np.zeros_like(w_array)
    for i in range(len(w_array)):
        tmp_w = w_array[i]
        cost[i] = compute_cost(x_train, y_train, tmp_w, tmp_b)

    @interact(w=(*w_range,10),continuous_update=False)
    def func( w=150):
        f_wb = np.dot(x_train, w) + tmp_b

        fig, ax = plt.subplots(1, 2, constrained_layout=True, figsize=(8,4))
        fig.canvas.toolbar_position = 'bottom'

        mk_cost_lines(x_train, y_train, w, tmp_b, ax[0])
        plt_house_x(x_train, y_train, f_wb=f_wb, ax=ax[0])

        ax[1].plot(w_array, cost)
        cur_cost = compute_cost(x_train, y_train, w, tmp_b)
        ax[1].scatter(w,cur_cost, s=100, color=dldarkred, zorder= 10, label= f"cost at w={w}")
        ax[1].hlines(cur_cost, ax[1].get_xlim()[0],w, lw=4, color=dlpurple, ls='dotted')
        ax[1].vlines(w, ax[1].get_ylim()[0],cur_cost, lw=4, color=dlpurple, ls='dotted')
        ax[1].set_title("Cost vs. w, (b fixed at 100)")
        ax[1].set_ylabel('Cost')
        ax[1].set_xlabel('w')
        ax[1].legend(loc='upper center')
        fig.suptitle(f"Minimize Cost: Current Cost = {cur_cost:0.0f}", fontsize=12)
        plt.show()

# this is the 2D cost curve with interactive slider
def plt_stationary(x_train, y_train):
    # setup figure
    fig = plt.figure( figsize=(9,8))
    #fig = plt.figure(constrained_layout=True,  figsize=(12,10))
    fig.set_facecolor('#ffffff') #white
    fig.canvas.toolbar_position = 'top'
    #gs = GridSpec(2, 2, figure=fig, wspace = 0.01)
    gs = GridSpec(2, 2, figure=fig)
    ax0 = fig.add_subplot(gs[0, 0])
    ax1 = fig.add_subplot(gs[0, 1])
    ax2 = fig.add_subplot(gs[1, :],  projection='3d')
    ax = np.array([ax0,ax1,ax2])

    #setup useful ranges and common linspaces
    w_range = np.array([200-300.,200+300])
    b_range = np.array([50-300., 50+300])
    b_space  = np.linspace(*b_range, 100)
    w_space  = np.linspace(*w_range, 100)

    # get cost for w,b ranges for contour and 3D
    tmp_b,tmp_w = np.meshgrid(b_space,w_space)
    z=np.zeros_like(tmp_b)
    for i in range(tmp_w.shape[0]):
        for j in range(tmp_w.shape[1]):
            z[i,j] = compute_cost(x_train, y_train, tmp_w[i][j], tmp_b[i][j] )
            if z[i,j] == 0: z[i,j] = 1e-6

    w0=200;b=-100    #initial point
    ### plot model w cost ###
    f_wb = np.dot(x_train,w0) + b
    mk_cost_lines(x_train,y_train,w0,b,ax[0])
    plt_house_x(x_train, y_train, f_wb=f_wb, ax=ax[0])

    ### plot contour ###
    CS = ax[1].contour(tmp_w, tmp_b, np.log(z),levels=12, linewidths=2, alpha=0.7,colors=dlcolors)
    ax[1].set_title('Cost(w,b)')
    ax[1].set_xlabel('w', fontsize=10)
    ax[1].set_ylabel('b', fontsize=10)
    ax[1].set_xlim(w_range) ; ax[1].set_ylim(b_range)
    cscat  = ax[1].scatter(w0,b, s=100, color=dlblue, zorder= 10, label="cost with \ncurrent w,b")
    chline = ax[1].hlines(b, ax[1].get_xlim()[0],w0, lw=4, color=dlpurple, ls='dotted')
    cvline = ax[1].vlines(w0, ax[1].get_ylim()[0],b, lw=4, color=dlpurple, ls='dotted')
    ax[1].text(0.5,0.95,"Click to choose w,b",  bbox=dict(facecolor='white', ec = 'black'), fontsize = 10,
                transform=ax[1].transAxes, verticalalignment = 'center', horizontalalignment= 'center')

    #Surface plot of the cost function J(w,b)
    ax[2].plot_surface(tmp_w, tmp_b, z,  cmap = dlcm, alpha=0.3, antialiased=True)
    ax[2].plot_wireframe(tmp_w, tmp_b, z, color='k', alpha=0.1)
    plt.xlabel("$w$")
    plt.ylabel("$b$")
    ax[2].zaxis.set_rotate_label(False)
    ax[2].xaxis.set_pane_color((1.0, 1.0, 1.0, 0.0))
    ax[2].yaxis.set_pane_color((1.0, 1.0, 1.0, 0.0))
    ax[2].zaxis.set_pane_color((1.0, 1.0, 1.0, 0.0))
    ax[2].set_zlabel("J(w, b)\n\n", rotation=90)
    plt.title("Cost(w,b) \n [You can rotate this figure]", size=12)
    ax[2].view_init(30, -120)

    return fig,ax, [cscat, chline, cvline]


#https://matplotlib.org/stable/users/event_handling.html
class plt_update_onclick:
    def __init__(self, fig, ax, x_train,y_train, dyn_items):
        self.fig = fig
        self.ax = ax
        self.x_train = x_train
        self.y_train = y_train
        self.dyn_items = dyn_items
        self.cid = fig.canvas.mpl_connect('button_press_event', self)

    def __call__(self, event):
        if event.inaxes == self.ax[1]:
            ws = event.xdata
            bs = event.ydata
            cst = compute_cost(self.x_train, self.y_train, ws, bs)

            # clear and redraw line plot
            self.ax[0].clear()
            f_wb = np.dot(self.x_train,ws) + bs
            mk_cost_lines(self.x_train,self.y_train,ws,bs,self.ax[0])
            plt_house_x(self.x_train, self.y_train, f_wb=f_wb, ax=self.ax[0])

            # remove lines and re-add on countour plot and 3d plot
            for artist in self.dyn_items:
                artist.remove()

            a = self.ax[1].scatter(ws,bs, s=100, color=dlblue, zorder= 10, label="cost with \ncurrent w,b")
            b = self.ax[1].hlines(bs, self.ax[1].get_xlim()[0],ws, lw=4, color=dlpurple, ls='dotted')
            c = self.ax[1].vlines(ws, self.ax[1].get_ylim()[0],bs, lw=4, color=dlpurple, ls='dotted')
            d = self.ax[1].annotate(f"Cost: {cst:.0f}", xy= (ws, bs), xytext = (4,4), textcoords = 'offset points',
                               bbox=dict(facecolor='white'), size = 10)

            #Add point in 3D surface plot
            e = self.ax[2].scatter3D(ws, bs,cst , marker='X', s=100)

            self.dyn_items = [a,b,c,d,e]
            self.fig.canvas.draw()


def soup_bowl():
    """ Create figure and plot with a 3D projection"""
    fig = plt.figure(figsize=(8,8))

    #Plot configuration
    ax = fig.add_subplot(111, projection='3d')
    ax.xaxis.set_pane_color((1.0, 1.0, 1.0, 0.0))
    ax.yaxis.set_pane_color((1.0, 1.0, 1.0, 0.0))
    ax.zaxis.set_pane_color((1.0, 1.0, 1.0, 0.0))
    ax.zaxis.set_rotate_label(False)
    ax.view_init(45, -120)

    #Useful linearspaces to give values to the parameters w and b
    w = np.linspace(-20, 20, 100)
    b = np.linspace(-20, 20, 100)

    #Get the z value for a bowl-shaped cost function
    z=np.zeros((len(w), len(b)))
    j=0
    for x in w:
        i=0
        for y in b:
            z[i,j] = x**2 + y**2
            i+=1
        j+=1

    #Meshgrid used for plotting 3D functions
    W, B = np.meshgrid(w, b)

    #Create the 3D surface plot of the bowl-shaped cost function
    ax.plot_surface(W, B, z, cmap = "Spectral_r", alpha=0.7, antialiased=False)
    ax.plot_wireframe(W, B, z, color='k', alpha=0.1)
    ax.set_xlabel("$w$")
    ax.set_ylabel("$b$")
    ax.set_zlabel("$J(w,b)$", rotation=90)
    ax.set_title("$J(w,b)$\n [You can rotate this figure]", size=15)

    plt.show()

def inbounds(a,b,xlim,ylim):
    xlow,xhigh = xlim
    ylow,yhigh = ylim
    ax, ay = a
    bx, by = b
    if (ax > xlow and ax < xhigh) and (bx > xlow and bx < xhigh) \
        and (ay > ylow and ay < yhigh) and (by > ylow and by < yhigh):
        return True
    return False

def plt_contour_wgrad(x, y, hist, ax, w_range=[-100, 500, 5], b_range=[-500, 500, 5],
                contours = [0.1,50,1000,5000,10000,25000,50000],
                      resolution=5, w_final=200, b_final=100,step=10 ):
    b0,w0 = np.meshgrid(np.arange(*b_range),np.arange(*w_range))
    z=np.zeros_like(b0)
    for i in range(w0.shape[0]):
        for j in range(w0.shape[1]):
            z[i][j] = compute_cost(x, y, w0[i][j], b0[i][j] )

    CS = ax.contour(w0, b0, z, contours, linewidths=2,
                   colors=[dlblue, dlorange, dldarkred, dlmagenta, dlpurple])
    ax.clabel(CS, inline=1, fmt='%1.0f', fontsize=10)
    ax.set_xlabel("w");  ax.set_ylabel("b")
    ax.set_title('Contour plot of cost J(w,b), vs b,w with path of gradient descent')
    w = w_final; b=b_final
    ax.hlines(b, ax.get_xlim()[0],w, lw=2, color=dlpurple, ls='dotted')
    ax.vlines(w, ax.get_ylim()[0],b, lw=2, color=dlpurple, ls='dotted')

    base = hist[0]
    for point in hist[0::step]:
        edist = np.sqrt((base[0] - point[0])**2 + (base[1] - point[1])**2)
        if(edist > resolution or point==hist[-1]):
            if inbounds(point,base, ax.get_xlim(),ax.get_ylim()):
                plt.annotate('', xy=point, xytext=base,xycoords='data',
                         arrowprops={'arrowstyle': '->', 'color': 'r', 'lw': 3},
                         va='center', ha='center')
            base=point
    return


def plt_divergence(p_hist, J_hist, x_train,y_train):

    x=np.zeros(len(p_hist))
    y=np.zeros(len(p_hist))
    v=np.zeros(len(p_hist))
    for i in range(len(p_hist)):
        x[i] = p_hist[i][0]
        y[i] = p_hist[i][1]
        v[i] = J_hist[i]

    fig = plt.figure(figsize=(12,5))
    plt.subplots_adjust( wspace=0 )
    gs = fig.add_gridspec(1, 5)
    fig.suptitle(f"Cost escalates when learning rate is too large")
    #===============
    #  First subplot
    #===============
    ax = fig.add_subplot(gs[:2], )

    # Print w vs cost to see minimum
    fix_b = 100
    w_array = np.arange(-70000, 70000, 1000)
    cost = np.zeros_like(w_array)

    for i in range(len(w_array)):
        tmp_w = w_array[i]
        cost[i] = compute_cost(x_train, y_train, tmp_w, fix_b)

    ax.plot(w_array, cost)
    ax.plot(x,v, c=dlmagenta)
    ax.set_title("Cost vs w, b set to 100")
    ax.set_ylabel('Cost')
    ax.set_xlabel('w')
    ax.xaxis.set_major_locator(MaxNLocator(2))

    #===============
    # Second Subplot
    #===============

    tmp_b,tmp_w = np.meshgrid(np.arange(-35000, 35000, 500),np.arange(-70000, 70000, 500))
    z=np.zeros_like(tmp_b)
    for i in range(tmp_w.shape[0]):
        for j in range(tmp_w.shape[1]):
            z[i][j] = compute_cost(x_train, y_train, tmp_w[i][j], tmp_b[i][j] )

    ax = fig.add_subplot(gs[2:], projection='3d')
    ax.plot_surface(tmp_w, tmp_b, z,  alpha=0.3, color=dlblue)
    ax.xaxis.set_major_locator(MaxNLocator(2))
    ax.yaxis.set_major_locator(MaxNLocator(2))

    ax.set_xlabel('w', fontsize=16)
    ax.set_ylabel('b', fontsize=16)
    ax.set_zlabel('\ncost', fontsize=16)
    plt.title('Cost vs (b, w)')
    # Customize the view angle
    ax.view_init(elev=20., azim=-65)
    ax.plot(x, y, v,c=dlmagenta)

    return

# draw derivative line
# y = m*(x - x1) + y1
def add_line(dj_dx, x1, y1, d, ax):
    x = np.linspace(x1-d, x1+d,50)
    y = dj_dx*(x - x1) + y1
    ax.scatter(x1, y1, color=dlblue, s=50)
    ax.plot(x, y, '--', c=dldarkred,zorder=10, linewidth = 1)
    xoff = 30 if x1 == 200 else 10
    ax.annotate(r"$\frac{\partial J}{\partial w}$ =%d" % dj_dx, fontsize=14,
                xy=(x1, y1), xycoords='data',
            xytext=(xoff, 10), textcoords='offset points',
            arrowprops=dict(arrowstyle="->"),
            horizontalalignment='left', verticalalignment='top')

def plt_gradients(x_train,y_train, f_compute_cost, f_compute_gradient):
    #===============
    #  First subplot
    #===============
    fig,ax = plt.subplots(1,2,figsize=(12,4))

    # Print w vs cost to see minimum
    fix_b = 100
    w_array = np.linspace(-100, 500, 50)
    w_array = np.linspace(0, 400, 50)
    cost = np.zeros_like(w_array)

    for i in range(len(w_array)):
        tmp_w = w_array[i]
        cost[i] = f_compute_cost(x_train, y_train, tmp_w, fix_b)
    ax[0].plot(w_array, cost,linewidth=1)
    ax[0].set_title("Cost vs w, with gradient; b set to 100")
    ax[0].set_ylabel('Cost')
    ax[0].set_xlabel('w')

    # plot lines for fixed b=100
    for tmp_w in [100,200,300]:
        fix_b = 100
        dj_dw,dj_db = f_compute_gradient(x_train, y_train, tmp_w, fix_b )
        j = f_compute_cost(x_train, y_train, tmp_w, fix_b)
        add_line(dj_dw, tmp_w, j, 30, ax[0])

    #===============
    # Second Subplot
    #===============

    tmp_b,tmp_w = np.meshgrid(np.linspace(-200, 200, 10), np.linspace(-100, 600, 10))
    U = np.zeros_like(tmp_w)
    V = np.zeros_like(tmp_b)
    for i in range(tmp_w.shape[0]):
        for j in range(tmp_w.shape[1]):
            U[i][j], V[i][j] = f_compute_gradient(x_train, y_train, tmp_w[i][j], tmp_b[i][j] )
    X = tmp_w
    Y = tmp_b
    n=-2
    color_array = np.sqrt(((V-n)/2)**2 + ((U-n)/2)**2)

    ax[1].set_title('Gradient shown in quiver plot')
    Q = ax[1].quiver(X, Y, U, V, color_array, units='width', )
    ax[1].quiverkey(Q, 0.9, 0.9, 2, r'$2 \frac{m}{s}$', labelpos='E',coordinates='figure')
    ax[1].set_xlabel("w"); ax[1].set_ylabel("b")

到了这里,关于【机器学习】Cost Function的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 一文详解人工智能:线性回归、逻辑回归和支持向量机(SVM)

    在人工智能领域,线性回归、逻辑回归和支持向量机是常见的机器学习算法。本文将详细介绍这三种算法的原理和应用,并提供相应的代码示例。 线性回归是一种用于建立变量之间线性关系的回归分析方法。它通过拟合一个线性模型来预测连续变量的值。线性回归的目标是找

    2024年02月03日
    浏览(36)
  • 人工智能-线性回归的从零开始实现

    在了解线性回归的关键思想之后,我们可以开始通过代码来动手实现线性回归了。 在这一节中,我们将从零开始实现整个方法, 包括数据流水线、模型、损失函数和小批量随机梯度下降优化器。 虽然现代的深度学习框架几乎可以自动化地进行所有这些工作,但从零开始实现

    2024年02月08日
    浏览(35)
  • 【深入探究人工智能】逻辑函数|线性回归算法|SVM

    🎉博客主页:小智_x0___0x_ 🎉欢迎关注:👍点赞🙌收藏✍️留言 🎉系列专栏:小智带你闲聊 🎉代码仓库:小智的代码仓库 机器学习算法是一种基于数据和经验的算法,通过对大量数据的学习和分析,自动发现数据中的模式、规律和关联,并利用这些模式和规律来进行预测

    2024年02月08日
    浏览(39)
  • 【人工智能】简单线性回归模型介绍及python实现

    简单线性回归是人工智能和统计学中一个基本的预测技术,用于分析两个连续变量之间的线性关系。在简单线性回归中,我们试图找到一个线性方程来最好地描述这两个变量之间的关系。 变量 :简单线性回归涉及两个变量 - 自变量(independent variable)和因变量(dependent vari

    2024年01月17日
    浏览(40)
  • 【人工智能】多元线性回归模型举例及python实现方式

    比如你做了一个企业想要招人,但是不知道月薪应该定在多少,你做了一个月薪和收入的调研,包括年限、学历、地区和月薪 做一个月薪=w1 年限+w2 学历+w3*城市+…+b的工作年限和薪资的多元线性模型,然后找出最适合线性模型的直线-成本函数、梯度下降方式,来预估你可以

    2024年02月19日
    浏览(40)
  • 机器学习_数据升维_多项式回归代码_保险案例数据说明_补充_均匀分布_标准正太分布---人工智能工作笔记0038

    然后我们再来看一下官网注意上面这个旧的,现在2023-05-26 17:26:31..我去看了新的官网, scikit-learn已经添加了很多新功能,     我们说polynomial多项式回归其实是对数据,进行 升维对吧,从更多角度去看待问题,这样 提高模型的准确度. 其实y=w0x0+w1x1.. 这里就是提高了这个x的个数对吧

    2024年02月06日
    浏览(36)
  • 人工智能 框架 paddlepaddle 飞桨 使用指南& 使用例子 线性回归模型demo 1

    安装过程使用指南线性回归模型 使用例子 本来预想 是安装 到 conda 版本的 11.7的 但是电脑没有gpu 所以 安装过程稍有变动,下面简单讲下  由于想安装11.7版本 py 是3.9 所以虚拟环境名称也是 paddle_env117 检查环境即可 本文档为您介绍 conda 安装方式

    2024年04月15日
    浏览(38)
  • 初识人工智能,一文读懂机器学习之逻辑回归知识文集(1)

    🏆作者简介,普修罗双战士,一直追求不断学习和成长,在技术的道路上持续探索和实践。 🏆多年互联网行业从业经验,历任核心研发工程师,项目技术负责人。 🎉欢迎 👍点赞✍评论⭐收藏 🔎 人工智能领域知识 🔎 链接 专栏 人工智能专业知识学习一 人工智能专栏 人

    2024年01月23日
    浏览(48)
  • 机器学习——线性回归/岭回归/Lasso回归

    线性回归会用到python第三方库:sklearn.linear_model中的LinearRegression 导入第三方库的方法:from sklearn.linear_model import LinearRegression 使用LinearRegression(二维数据,一维数据)进行预测,其中数据类型可以是pandas中的DataFrame或者series,也可以是numpy中的array数据,但维度一定要正确输入。

    2024年02月10日
    浏览(31)
  • 机器学习~从入门到精通(二)线性回归算法和多元线性回归

    SimpleLinearRegression.py moduel_selection.py draft.py lin_fit(x,y) lin_fit2(x,y) x.shape y.shape MSE mean squared error 均方误差 R squared error

    2024年02月01日
    浏览(58)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包