MYSQL中JSON类型介绍

这篇具有很好参考价值的文章主要介绍了MYSQL中JSON类型介绍。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1 json对象的介绍

在mysql未支持json数据类型时,我们通常使用varchar、blob或text的数据类型存储json字符串,对mysql来说,用户插入的数据只是序列化后的一个普通的字符串,不会对JSON文档本身的语法合法性做检查,文档的合法性需要用户自己保证。在使用时需要先将整个json对象从数据库读取出来,在内存中完成解析及相应的计算处理,这种方式增加了数据库的网络开销并降低处理效率。

从 MySQL 5.7.8 开始,MySQL 支持RFC 7159定义的全部json 数据类型,具体的包含四种基本类型(strings, numbers, booleans,and null)和两种结构化类型(objects and arrays)。可以有效地访问 JSON文档中的数据。与将 JSON 格式的字符串存储在字符串列中相比,该数据类型具有以下优势:

  • 自动验证存储在 JSON列中的 JSON 文档。无效的文档会产生错误。
  • 优化的存储格式。存储在列中的 JSON 文档被转换为允许快速读取文档元素的内部格式。当读取 JSON 值时,不需要从文本表示中解析该值,使服务器能够直接通过键或数组索引查找子对象或嵌套值,而无需读取文档中它们之前或之后的所有值。

2 json类型的存储结构

mysql为了提供对json对象的支持,提供了一套将json字符串转为结构化二进制对象的存储方式。json会被转为二进制的doc对象存储于磁盘中(在处理JSON时MySQL使用的utf8mb4字符集,utf8mb4是utf8和ascii的超集)。

doc对象包含两个部分,type和value部分。其中type占1字节,可以表示16种类型:大的和小的json object类型、大的和小的 json array类型、literal类型(true、false、null三个值)、number类型(int6、uint16、int32、uint32、int64、uint64、double类型、utf8mb4 string类型和custom data(mysql自定义类型),具体可以参考源码json_binary.cc和json_binary.h进行学习。

下面进行简单介绍:
type ::=
0x00 | // small JSON object
0x01 | // large JSON object
0x02 | // small JSON array
0x03 | // large JSON array
0x04 | // literal (true/false/null)
0x05 | // int16
0x06 | // uint16
0x07 | // int32
0x08 | // uint32
0x09 | // int64
0x0a | // uint64
0x0b | // double
0x0c | // utf8mb4 string
0x0f // custom data (any MySQL data type)

  1. value包含 object、array、literal、number、string和custom-data六种类型,与type的16种类型对应。
  2. object表示json对象类型,由6部分组成:
  3. object ::= element-count size key-entry value-entry key value
    其中:
    element-count表示对象中包含的成员(key)个数,在array类型中表示数组元素个数。
    size表示整个json对象的二进制占用空间大小。小对象用2Bytes空间表示(最大64K),大对象用4Bytes表示(最大4G)
    key-entry可以理解为一个用于指向真实key值的数组。本身用于二分查找,加速json字段的定位。
    key-entry由两个部分组成:
    key-entry ::= key-offset key-length
    其中:
    key-offset:表示key值存储的偏移量,便于快速定位key的真实值。
    key-length:表示key值的长度,用于分割不同key值的边界。长度为2Bytes,这说明,key值的长度最长不能超过64kb.
  4. value-entry与key-enter功能类似,不同之处在于,value-entry可能存储真实的value值。
    value-entry由两部分组成:
    value-entry ::= type offset-or-inlined-value
    其中:
    type表示value类型,如上文所示,支持16种基本类型,从而可以表示各种类型的嵌套。
  5. offset-or-inlined-value:有两层含义,如果value值足够小,可以存储于此,那么就存储数据本身,如果数据本身较大,则存储真实值的偏移用于快速定位。
    key 表示key值的真实值,类型为:key ::= utf8mb4-data,这里无需指定key值长度,因为key-entry中已经声明了key的存储长度。同时,在同一个json对象中,key值的长度总是一样的。

array表示json数组,array类型主要包含4部分:
array ::= element-count size value-entry value

我们来使用示意图更清晰的展示它的结构:

举例说明:

需要注意的是:

  • JSON对象的Key索引(图中橙色部分)都是排序好的,先按长度排序,长度相同的按照code point排序;Value索引(图中黄色部分)根据对应的Key的位置依次排列,最后面真实的数据存储(图中白色部分)也是如此
  • Key和Value的索引对存储了对象内的偏移和大小,单个索引的大小固定,可以通过简单的算术跳转到距离为N的索引
  • 通过MySQL5.7.16源代码可以看到,在序列化JSON文档时,MySQL会动态检测单个对象的大小,如果小于64KB使用两个字节的偏移量,否则使用四个字节的偏移量,以节省空间。同时,动态检查单个对象是否是大对象,会造成对大对象进行两次解析,源代码中也指出这是以后需要优化的点
  • 现在受索引中偏移量和存储大小四个字节大小的限制,单个JSON文档的大小不能超过4G;单个KEY的大小不能超过两个字节,即64K
  • 索引存储对象内的偏移是为了方便移动,如果某个键值被改动,只用修改受影响对象整体的偏移量
  • 索引的大小现在是冗余信息,因为通过相邻偏移可以简单的得到存储大小,主要是为了应对变长JSON对象值更新,如果长度变小,JSON文档整体都不用移动,只需要当前对象修改大小
  • 现在MySQL对于变长大小的值没有预留额外的空间,也就是说如果该值的长度变大,后面的存储都要受到影响
  • 结合JSON的路径表达式可以知道,JSON的搜索操作只用反序列化路径上涉及到的元素,速度非常快,实现了读操作的高性能
  • MySQL对于大型文档的变长键值的更新操作可能会变慢,可能并不适合写密集的需求

3 json类型基本操作

3.1 json数据插入

json类型数据插入时有两种方式,一种是基于字符串格式插入,另一种是基于json_object()函数,在使用json_object()函数只需按k-v顺序,以,符号隔开顺序插入即可,MYSQL会自动验证 JSON 文档,无效的文档会产生错误。

mysql> CREATE TABLE t1 (jdoc JSON);
Query OK, 0 rows affected (0.20 sec)

mysql> INSERT INTO t1 VALUES('{"key1": "value1", "key2": "value2"}');
Query OK, 1 row affected (0.01 sec)

mysql> INSERT INTO t1 VALUES('[1, 2,');
ERROR 3140 (22032) at line 2: Invalid JSON text:
"Invalid value." at position 6 in value (or column)  '[1, 2,'.

当一个字符串被解析并发现是一个有效的 JSON 文档时,它也会被规范化:具有与文档中先前找到的键重复的键的成员被丢弃(即使值不同)。以下第一个sql中通过 JSON_OBJECT()调用生成的对象值不包括第二个key1元素,因为该键名出现在值的前面;第二个sql中只保留了x第一次出现的值:

mysql> SELECT JSON_OBJECT('key1', 1, 'key2', 'abc', 'key1', 'def');
+------------------------------------------------------+
| JSON_OBJECT('key1', 1, 'key2', 'abc', 'key1', 'def') |
+------------------------------------------------------+
| {"key1": 1, "key2": "abc"}                           |
+------------------------------------------------------+

mysql> INSERT INTO t1 VALUES
     >     ('{"x": 17, "x": "red"}'),
     >     ('{"x": 17, "x": "red", "x": [3, 5, 7]}');

mysql> SELECT c1 FROM t1;
+-----------+
| c1        |
+-----------+
| {"x": 17} |
| {"x": 17} |
+-----------+

3.2 json合并

MySQL 5.7支持JSON_MERGE()的合并算法,多个对象合并时产生一个对象。
可将多个数组合并为一个数组:

mysql> SELECT JSON_MERGE('[1, 2]', '["a", "b"]', '[true, false]');
+-----------------------------------------------------+
| JSON_MERGE('[1, 2]', '["a", "b"]', '[true, false]') |
+-----------------------------------------------------+
| [1, 2, "a", "b", true, false]                       |
+-----------------------------------------------------+

当合并数组与对象时,会将对象转换为新数组进行合并:

mysql> SELECT JSON_MERGE('[10, 20]', '{"a": "x", "b": "y"}');
+------------------------------------------------+
| JSON_MERGE('[10, 20]', '{"a": "x", "b": "y"}') |
+------------------------------------------------+
| [10, 20, {"a": "x", "b": "y"}]                 |
+------------------------------------------------+

如果多个对象具有相同的键,则生成的合并对象中该键的值是包含键值的数组

mysql> SELECT JSON_MERGE('{"a": 1, "b": 2}', '{"c": 3, "a": 4}');
+----------------------------------------------------+
| JSON_MERGE('{"a": 1, "b": 2}', '{"c": 3, "a": 4}') |
+----------------------------------------------------+
| {"a": [1, 4], "b": 2, "c": 3}                      |
+----------------------------------------------------+

MySQL 8.0.3(及更高版本)支持两种合并算法,由函数 JSON_MERGE_PRESERVE()和 JSON_MERGE_PATCH(). 它们在处理重复键的方式上有所不同:JSON_MERGE_PRESERVE()保留重复键的值(与5.7版本的JSON_MERGE()相同),而 JSON_MERGE_PATCH()丢弃除最后一个值之外的所有值。具体的

  • JSON_MERGE_PRESERVE() 函数接受两个或多个 JSON 文档并返回组合结果。如果参数为两个object,相同的key将会把value合并为array(即使value也相同,也会合并为array),不同的key则直接合并。如果其中一个参数为json array,则另一个json object整体作为一个元素,加入array结果。
  • JSON_MERGE_PATCH()函数接受两个或多个 JSON 文档并返回组合结果。如果参数为两个object,相同的key的value将会被后面参数的value覆盖,不同的key则直接合并。如果合并的是数组,将按照“最后一个重复键获胜”逻辑仅保留最后一个参数。
mysql> SELECT JSON_MERGE_PRESERVE('{"a":1,"b":2}', '{"a":3,"c":3}');
+-------------------------------------------------------+
| JSON_MERGE_PRESERVE('{"a":1,"b":2}', '{"a":3,"c":3}') |
+-------------------------------------------------------+
| {"a": [1, 3], "b": 2, "c": 3}                         |
+-------------------------------------------------------+
1 row in set (0.01 sec)
mysql> SELECT JSON_MERGE_PATCH('{"a":1,"b":2}', '{"a":3,"c":3}');
+----------------------------------------------------+
| JSON_MERGE_PATCH('{"a":1,"b":2}', '{"a":3,"c":3}') |
+----------------------------------------------------+
| {"a": 3, "b": 2, "c": 3}                           |
+----------------------------------------------------+
1 row in set (0.02 sec)

mysql> SELECT JSON_MERGE_PRESERVE('["a", 1]', '"a"','{"key": "value"}');
+-----------------------------------------------------------+
| JSON_MERGE_PRESERVE('["a", 1]', '"a"','{"key": "value"}') |
+-----------------------------------------------------------+
| ["a", 1, "a", {"key": "value"}]                           |
+-----------------------------------------------------------+
1 row in set (0.00 sec)
mysql> SELECT JSON_MERGE_PATCH('["a", 1]', '"a"','{"key": "value"}') ;
+--------------------------------------------------------+
| JSON_MERGE_PATCH('["a", 1]', '"a"','{"key": "value"}') |
+--------------------------------------------------------+
| {"key": "value"}                                       |
+--------------------------------------------------------+
1 row in set (0.01 sec)

3.3 json数据查询

MySQL 5.7.7+本身提供了很多原生的函数以及路径表达式来方便用户访问JSON数据。
JSON_EXTRACT()函数用于解析json对象,->符号是就一种JSON_EXTRACT()函数的等价模式。例如查询上面t1表中 jdoc字段中key值为x的值

SELECT jdoc->'$.x' FROM t1;
SELECT JSON_EXTRACT(jdoc,'$.x') FROM t1;

JSON_EXTRACT返回值会带有” “,如果想获取原本的值可以使用JSON_UNQUOTE

mysql> SELECT JSON_EXTRACT('{"id": 14, "name": "Aztalan"}', '$.name');
+---------------------------------------------------------+
| JSON_EXTRACT('{"id": 14, "name": "Aztalan"}', '$.name') |
+---------------------------------------------------------+
| "Aztalan"                                               |
+---------------------------------------------------------+

mysql> SELECT JSON_UNQUOTE(json_extract('{"id": 14, "name": "Aztalan"}', '$.name'));;
+-----------------------------------------------------------------------+
| JSON_UNQUOTE(json_extract('{"id": 14, "name": "Aztalan"}', '$.name')) |
+-----------------------------------------------------------------------+
| Aztalan                                                               |
+-----------------------------------------------------------------------+

json路径的语法:

pathExpression:
    scope[(pathLeg)*]

pathLeg:
    member | arrayLocation | doubleAsterisk

member:
    period ( keyName | asterisk )

arrayLocation:
    leftBracket ( nonNegativeInteger | asterisk ) rightBracket

keyName:
    ESIdentifier | doubleQuotedString

doubleAsterisk:
    '**'

period:
    '.'

asterisk:
    '*'

leftBracket:
    '['

rightBracket:
    ']'

以json { “a”: [ [ 3, 2 ], [ { “c” : “d” }, 1 ] ], “b”: { “c” : 6 }, “one potato”: 7, “b.c” : 8 } 为例:
\(.a\[1\] 获取的值为 \[ { “c” : “d” }, 1 \] \).b.c 获取的值为 6
$.”b.c” 获取的值为 8(因为键名包含不合法的表达式所以需要使用引号)

mysql>  select json_extract('{ "a": [ [ 3, 2 ], [ { "c" : "d" }, 1 ] ], "b": { "c" : 6 }, "one potato": 7, "b.c" : 8 }','$**.c');
+-------------------------------------------------------------------------------------------------------------------+
| JSON_EXTRACT('{ "a": [ [ 3, 2 ], [ { "c" : "d" }, 1 ] ], "b": { "c" : 6 }, "one potato": 7, "b.c" : 8 }','$**.c') |
+-------------------------------------------------------------------------------------------------------------------+
| ["d", 6]                                                                                                          |
+-------------------------------------------------------------------------------------------------------------------+

\(**.c 匹配到了两个路径 : \).a[1].c 获取的值是”d”
$.b.c 获取的值为 6

3.4 json数据更新

一些函数采用现有的 JSON 文档,以某种方式对其进行修改,然后返回结果修改后的文档。路径表达式指示在文档中进行更改的位置。例如,JSON_SET()、 JSON_INSERT()和 JSON_REPLACE()函数各自采用现有的 JSON 文档,加上一个或多个路径和值对,来描述修改文档和要更新的值。这些函数在处理文档中现有值和不存在值的方式上有所不同。
具体如下

mysql> SET @j = '["a", {"b": [true, false]}, [10, 20]]';

JSON_SET()替换存在的路径的值并添加不存在的路径的值:

mysql> SELECT JSON_SET(@j, '$[1].b[0]', 1, '$[2][2]', 2);
+--------------------------------------------+
| JSON_SET(@j, '$[1].b[0]', 1, '$[2][2]', 2) |
+--------------------------------------------+
| ["a", {"b": [1, false]}, [10, 20, 2]]      |
+--------------------------------------------+

在这种情况下,路径\(\[1\].b\[0\]选择一个现有值 ( true),该值将替换为路径参数 ( 1) 后面的值。该路径\)[2][2]不存在,因此将相应的值 ( 2) 添加到 选择的值中$[2]。
JSON_INSERT()添加新值但不替换现有值:

mysql> SELECT JSON_INSERT(@j, '$[1].b[0]', 1, '$[2][2]', 2);
+-----------------------------------------------+
| JSON_INSERT(@j, '$[1].b[0]', 1, '$[2][2]', 2) |
+-----------------------------------------------+
| ["a", {"b": [true, false]}, [10, 20, 2]]      |
+-----------------------------------------------+

JSON_REPLACE()替换现有值并忽略新值:

mysql> SELECT JSON_REPLACE(@j, '$[1].b[0]', 1, '$[2][2]', 2);
+------------------------------------------------+
| JSON_REPLACE(@j, '$[1].b[0]', 1, '$[2][2]', 2) |
+------------------------------------------------+
| ["a", {"b": [1, false]}, [10, 20]]             |
+------------------------------------------------+

JSON_REMOVE()接受一个 JSON 文档和一个或多个路径,这些路径指定要从文档中删除的值。返回值是原始文档减去文档中存在的路径选择的值:

mysql> SELECT JSON_REMOVE(@j, '$[2]', '$[1].b[1]', '$[1].b[1]');
+---------------------------------------------------+
| JSON_REMOVE(@j, '$[2]', '$[1].b[1]', '$[1].b[1]') |
+---------------------------------------------------+
| ["a", {"b": [true]}]                              |
+---------------------------------------------------+

\(\[2\]匹配\[10, 20\] 并删除它。 \)[1].b[1]匹配 元素false中 的第一个实例b并将其删除。
不匹配的第二个实例$[1].b[1]:该元素已被删除,路径不再存在,并且没有效果。

3.5 json比较与排序

JSON值可以使用=, <, <=, >, >=, <>, !=, <=>等操作符,BETWEEN, IN,GREATEST, LEAST等操作符现在还不支持。JSON值使用的两级排序规则,第一级基于JSON的类型,类型不同的使用每个类型特有的排序规则。
JSON类型按照优先级从高到低为

BLOB
BIT
OPAQUE
DATETIME
TIME
DATE
BOOLEAN
ARRAY
OBJECT
STRING
INTEGER, DOUBLE
NULL

优先级高的类型大,不用再进行其他的比较操作;如果类型相同,每个类型按自己的规则排序。具体的规则如下:

  • BLOB/BIT/OPAQUE: 比较两个值前N个字节,如果前N个字节相同,短的值小
  • DATETIME/TIME/DATE: 按照所表示的时间点排序
  • BOOLEAN: false小于true
  • ARRAY: 两个数组如果长度和在每个位置的值相同时相等,如果不想等,取第一个不相同元素的排序结果,空元素最小。例:[] < [“a”] < [“ab”] < [“ab”, “cd”, “ef”] < [“ab”, “ef”]
  • OBJECT: 如果两个对象有相同的KEY,并且KEY对应的VALUE也都相同,两者相等。否则,两者大小不等,但相对大小未规定。例:{“a”: 1, “b”: 2} =
  • STRING: 取两个STRING较短的那个长度为N,比较两个值utf8mb4编码的前N个字节,较短的小,空值最小。例:”a” < “ab” < “b” < “bc”;此排序等同于使用 collat​​ion 对 SQL 字符串进行排序utf8mb4_bin。因为 utf8mb4_bin是二进制排序规则,所以 JSON 值的比较区分大小写:”A” < “a”
  • INTEGER/DOUBLE: 包括精确值和近似值的比较

4 JSON的索引

现在MySQL不支持对JSON列进行索引,官网文档的说明是:

JSON columns cannot be indexed. You can work around this restriction by creating an index on a generated column that extracts a scalar value from the JSON column.

虽然不支持直接在JSON列上建索引,但MySQL规定,可以首先使用路径表达式对JSON文档中的标量值建立虚拟列,然后在虚拟列上建立索引。这样用户可以使用表达式对自己感兴趣的键值建立索引。举个具体的例子来说明:

ALTER TABLE features ADD feature_street VARCHAR(30) AS (JSON_UNQUOTE(feature->"$.properties.STREET"));
ALTER TABLE features ADD INDEX (feature_street);

两个步骤,可以对feature列中properties键值下的STREET键(feature->”$.properties.STREET”)创建索引。

其中,feature_street列就是新添加的虚拟列。之所以取名虚拟列,是因为与它对应的还有一个存储列(stored column)。它们最大的区别为虚拟列只修改数据库的metadata,并不会存储真实的数据在硬盘上,读取过程也是实时计算的方式;而存储列会把表达式的列存储在硬盘上。两者使用的场景不一样,默认情况下通过表达式生成的列为虚拟列。

这样虚拟列的添加和删除都会非常快,而在虚拟列上建立索引跟传统的建立索引的方式并没有区别,会提高虚拟列读取的性能,减慢整体插入的性能。虚拟列的特性结合JSON的路径表达式,可以方便的为用户提供高效的键值索引功能。

5 总结

  1. JSON类型无须预定义字段,适合拓展信息的存储
  2. 单个JSON文档的大小不能超过4G;单个KEY的大小不能超过两个字节,即64K
  3. JSON类型适合应用于不常更新的静态数据
  4. 对搜索较频繁的数据建议增加虚拟列并建立索引

作者:京东物流 王凤辉

来源:京东云开发者社区 自猿其说Tech文章来源地址https://www.toymoban.com/news/detail-618162.html

到了这里,关于MYSQL中JSON类型介绍的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • mysql 5.7 json 类型 json 数组类型 普通字符串类型 10w数据 查询速度差异

    建表语句ddl 10w 数据 插入 存储过程  json 类型 vs 普通字符串类型 建表语句ddl CREATE TABLE tb_json_array_test ( id INT NOT NULL AUTO_INCREMENT, user_no VARCHAR(100), user_name VARCHAR(100), score INT, create_time date, update_time date, remark VARCHAR(100), field1 VARCHAR(100), field2 VARCHAR(100), field3 VARCHAR(100), field4 VARCHAR(

    2024年02月04日
    浏览(52)
  • 解锁Mysql中的JSON数据类型,怎一个爽字了得

    在实际业务开发中,随着业务的变化,数据的复杂性和多样性不断增加。传统的关系型数据库模型在这种情况下会显得受限,因为它们需要预先定义严格的数据模式,并且通常只能存储具有相同结构的数据。而面对非结构化或半结构化数据的存储和处理需求,选择使用非关系

    2024年02月20日
    浏览(43)
  • 3-MySQL基本数据类型介绍

    数据类型的介绍: 数据类型(data_type)是指系统中所允许的数据的类型。数据库中的每个列都应有适当的数据类型,用于限制或允许该列中存储的数据。例如,列中存储的为数字,则相应的数据类型应该为数值类型。 如果使用错误的数据类型可能会严重影响应用程序的功能

    2024年02月08日
    浏览(37)
  • 【Mysql】数据库第二讲(数据库中数据类型的介绍)

    数值越界测试: 说明: 在MySQL中,整型可以指定是有符号的和无符号的,默认是有符号的。 可以通过UNSIGNED来说明某个字段是无符号的 无符号案例: 注意 注意:尽量不使用unsigned,对于int类型可能存放不下的数据,int unsigned同样可能存放不下,与其如此,还不如设计时,将

    2024年02月09日
    浏览(55)
  • Mysql中json类型查询

    MySQL提供了一些函数和操作符,用于在JSON数据类型中进行查询。下面是一些常用的MySQL JSON查询使用方法: 这里的key是JSON字段中的键名。 使用JSON_CONTAINS函数可以过滤JSON数组中包含特定值的记录。例如,假设有一个名为data的JSON字段,其中包含一个名为tags的数组,可以使用以

    2024年02月16日
    浏览(49)
  • mysql中json类型字段用法

    前言 mysql从5.7.8版本开始原生支持了JSON类型数据,同时可以对JSON类型字段中的特定的值进行查询和更新等操作,通过增加JSON类型的属性可以大大的提高我们在mysql表中存储的数据的拓展性,无需每次新增字段时都进行表结构的调整,下面我们不深入讲解底层的实现原理,我们

    2024年02月04日
    浏览(61)
  • MySQL的Json类型个人用法详解

    前言 虽然MySQL很早就添加了Json类型,但是在业务开发过程中还是很少设计带这种类型的表。少不代表没有,当真正要对Json类型进行特定查询,修改,插入和优化等操作时,却感觉一下子想不起那些函数怎么使用。比如把json里的某个键和值作为SQL条件,修改某个键下的子键的

    2024年02月10日
    浏览(36)
  • mysql存储json类型方法和利弊

    利弊 一、json类型的特性 1、保证了JSON数据类型的强校验,JSON数据列会自动校验存入此列的内容是否符合JSON格式,非正常格式则报错,而varchar类型和text等类型本身是不存在这种机制的。 2、MySQL同时提供了一组操作JSON类型数据的内置函数。 3、更优化的存储格式,存储在JS

    2024年02月05日
    浏览(35)
  • mysql 字段类型为json,后端用list接收

    board` json DEFAULT NULL COMMENT \\\'信息,格式[{\\\"name\\\":\\\"net\\\",\\\"chip\\\":\\\"esp32\\\",\\\"hdVer\\\":1}]\\\' resultMap id=\\\"productDeviceAndBrand\\\" type=\\\"com.charg.product.domain.vo.ProductDeviceOperationsVo\\\" result property=\\\"brandId\\\" column=\\\"brand_id\\\"/ result property=\\\"brandName\\\" column=\\\"brand_name\\\"/ result property=\\\"productName\\\" column=\\\"product_name\\\"/ result property=\\\"productC

    2024年04月09日
    浏览(44)
  • Mybatis-Plus处理Mysql Json类型字段

    Mysql 5.7.8开始支持Json对象和Json数组,但在Mysql 8版本中使用Json性能更佳。 使用Json格式的好处: 无须预定义字段:字段可以无限拓展,避免了ALTER ADD COLUMN的操作,使用更加灵活。 处理稀疏字段:避免了稀疏字段的NULL值,避免冗余存储。 支持索引:相比于字符串格式的JSON,

    2024年02月03日
    浏览(53)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包