注意力机制中Q和K相乘的意义是什么?为什么Q和K相乘就可以得到它们之间的相似性/权重矩阵呢?

这篇具有很好参考价值的文章主要介绍了注意力机制中Q和K相乘的意义是什么?为什么Q和K相乘就可以得到它们之间的相似性/权重矩阵呢?。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

为什么query和key相乘就能得到学生和教师的相似度呢?它的内部原理是什么?

在注意力机制中,querykey 相乘得到的相似度其实是通过计算两个向量之间的点积来实现的。具体而言,我们将 querykey 进行点积运算后【这里的点积运算可以看作是一种度量相似度的方法,它可以从数学上衡量两个向量之间的相关性。当两个向量越相似时,它们的点积结果也会越大。】,再除以一个缩小因子 self.soft(一般取值为特征维度的平方根),就可以得到对应向量之间的余弦相似度,从而得到相似度分数。

相似度计算的方法有什么?

除了点积运算,还有一种常用的度量向量相似度的方法叫做余弦相似度。

1、点积:

注意力机制中Q和K相乘的意义是什么?为什么Q和K相乘就可以得到它们之间的相似性/权重矩阵呢?,Transformer,注意力机制+软阈值化,python,开发语言

 

2、余弦相似度:

注意力机制中Q和K相乘的意义是什么?为什么Q和K相乘就可以得到它们之间的相似性/权重矩阵呢?,Transformer,注意力机制+软阈值化,python,开发语言

 

对于注意力机制来说,点积或者余弦相似度通常是在计算查询向量和键向量之间的相似度时使用的。例如,在上面的公式中,a 可以表示查询向量(即学生网络输出的特征向量),b 可以表示键向量(即教师网络输出的特征向量)。

注意:对于注意力机制来说,除了上述公式中的计算方式外,还需要在计算余弦相似度时进行归一化,以保证输出的权重矩阵符合概率分布的定义。常用的归一化方法包括 softmax 函数sigmoid 函数等。

        ## 4、computer Q and K attention weight: batch_size X No. stu feature X No.tea feature
        energy = torch.bmm(proj_query, proj_key)/self.soft
        attention = F.softmax(energy, dim = -1)

余弦相似度/卷积核之间的成对余弦相似性_相似度 卷积_马鹏森的博客-CSDN博客文章来源地址https://www.toymoban.com/news/detail-618198.html

到了这里,关于注意力机制中Q和K相乘的意义是什么?为什么Q和K相乘就可以得到它们之间的相似性/权重矩阵呢?的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 注意力机制详解系列(三):空间注意力机制

    👨‍💻 作者简介: 大数据专业硕士在读,CSDN人工智能领域博客专家,阿里云专家博主,专注大数据与人工智能知识分享。 🎉 专栏推荐: 目前在写CV方向专栏,更新不限于目标检测、OCR、图像分类、图像分割等方向,目前活动仅19.9,虽然付费但会长期更新,感兴趣的小伙

    2024年02月02日
    浏览(41)
  • 注意力机制详解系列(一):注意力机制概述

    👨‍💻 作者简介: 大数据专业硕士在读,CSDN人工智能领域博客专家,阿里云专家博主,专注大数据与人工智能知识分享。 公众号: GoAI的学习小屋,免费分享书籍、简历、导图等资料,更有交流群分享AI和大数据,加群方式公众号回复“加群”或➡️点击链接。 🎉 专栏推

    2024年01月25日
    浏览(41)
  • 注意力机制(四):多头注意力

    专栏:神经网络复现目录 注意力机制(Attention Mechanism)是一种人工智能技术,它可以让神经网络在处理序列数据时,专注于关键信息的部分,同时忽略不重要的部分。在自然语言处理、计算机视觉、语音识别等领域,注意力机制已经得到了广泛的应用。 注意力机制的主要思

    2024年02月06日
    浏览(44)
  • 大白话分析注意力机制和空间和通道注意力机制

    深度学习小白,个人理解,有错误请友友们纠正QAQ 官方解释:注意力机制(Attention Mechanism)源于对人类视觉的研究。在认知科学中,由于信息处理的瓶颈,人类会选择性地关注所有信息的一部分,同时忽略其他可见的信息。上述机制通常被称为注意力机制。 假设你正在准备

    2024年04月17日
    浏览(41)
  • 【深度学习注意力机制系列】—— SKNet注意力机制(附pytorch实现)

    SKNet(Selective Kernel Network) 是一种用于图像分类和目标检测任务的深度神经网络架构,其核心创新是 引入了选择性的多尺度卷积核(Selective Kernel)以及一种新颖的注意力机制 ,从而在不增加网络复杂性的情况下提升了特征提取的能力。SKNet的设计旨在 解决多尺度信息融合的

    2024年02月13日
    浏览(48)
  • 【深度学习注意力机制系列】—— ECANet注意力机制(附pytorch实现)

    ECANet(Efficient Channel Attention Network) 是一种 用于图像处理任务的神经网络架构,它在保持高效性的同时,有效地捕捉图像中的通道间关系,从而提升了特征表示的能力 。ECANet通过引入通道注意力机制,以及在卷积层中嵌入该机制,取得了优越的性能。本文将对ECANet的核心思

    2024年02月13日
    浏览(43)
  • 【深度学习注意力机制系列】—— SCSE注意力机制(附pytorch实现)

    SCSE注意力模块 (来自论文[1803.02579] Concurrent Spatial and Channel Squeeze Excitation in Fully Convolutional Networks (arxiv.org))。其对SE注意力模块进行了改进,提出了 cSE、sSE、scSE 三个模块变体,这些模块可以 增强有意义的特征,抑制无用特征 。今天我们就分别讲解一下这三个注意力模块。

    2024年02月13日
    浏览(53)
  • 【深度学习注意力机制系列】—— CBAM注意力机制(附pytorch实现)

    CBAM(Convolutional Block Attention Module) 是一种用于增强卷积神经网络(CNN)性能的注意力机制模块。它由Sanghyun Woo等人在2018年的论文[1807.06521] CBAM: Convolutional Block Attention Module (arxiv.org)中提出。CBAM的主要目标是 通过在CNN中引入通道注意力和空间注意力 来提高模型的感知能力,从

    2024年02月13日
    浏览(37)
  • 【深度学习注意力机制系列】—— SENet注意力机制(附pytorch实现)

    深度学习中的注意力机制(Attention Mechanism)是一种模仿人类视觉和认知系统的方法,它允许神经网络在处理输入数据时集中注意力于相关的部分。通过引入注意力机制,神经网络能够自动地学习并选择性地关注输入中的重要信息,提高模型的性能和泛化能力。 卷积神经网络

    2024年02月14日
    浏览(36)
  • 【动手深度学习-笔记】注意力机制(四)自注意力、交叉注意力和位置编码

    紧接上回:【动手深度学习-笔记】注意力机制(三)多头注意力 在注意力机制下,我们将词元序列输入注意力汇聚中,以便同一组词元同时充当查询、键和值。 具体来说,每个查询都会关注所有的键-值对并生成一个注意力输出。 像这样的,查询、键和值来自同一组输入的

    2024年01月16日
    浏览(45)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包