一、简介
1.1 定理
Cholesky分解法 又叫 平方根法,是一种分解 正定Hermite矩阵 (即 A = A H \boldsymbol A = \boldsymbol A^\mathrm H A=AH ) 的方法,以下我用实数域 (即 对称正定阵 A = A T \boldsymbol A = \boldsymbol A^\mathrm T A=AT) 来说明。
定理:若矩阵
A
∈
R
n
×
n
\boldsymbol A \in \mathbb R^{n\times n}
A∈Rn×n 正定,且
A
=
A
T
\boldsymbol A=\boldsymbol A^{\mathrm T}
A=AT,则存在唯一下三角矩阵
L
∈
R
n
×
n
\boldsymbol L \in \mathbb R^{n\times n}
L∈Rn×n ,使得:
A
=
L
L
T
\boldsymbol A = \boldsymbol L\boldsymbol L^{\mathrm T}
A=LLT
证明:(暂略,有时间补)
1.2 分解方法
记:
A
=
(
a
11
a
12
…
a
1
n
a
21
a
22
…
a
2
n
⋮
⋮
⋱
⋮
a
n
1
a
n
2
…
a
n
n
)
L
=
(
l
11
l
21
l
22
⋮
⋮
⋱
l
n
1
l
n
2
…
l
n
n
)
L
T
=
(
l
11
l
21
…
l
n
1
l
22
…
l
n
2
⋱
⋮
l
n
n
)
\boldsymbol A= \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \\ \end{pmatrix} \\ ~ \\ \boldsymbol L= \begin{pmatrix} l_{11} & \\ l_{21} & l_{22} \\ \vdots & \vdots & \ddots \\ l_{n1} & l_{n2} & \dots & l_{nn} \\ \end{pmatrix} ~~ \boldsymbol L^\mathrm T= \begin{pmatrix} l_{11} & l_{21} & \dots & l_{n1} \\ & l_{22} & \dots & l_{n2} \\ & & \ddots & \vdots \\ & & & l_{nn} \\ \end{pmatrix}
A=⎝⎜⎜⎜⎛a11a21⋮an1a12a22⋮an2……⋱…a1na2n⋮ann⎠⎟⎟⎟⎞ L=⎝⎜⎜⎜⎛l11l21⋮ln1l22⋮ln2⋱…lnn⎠⎟⎟⎟⎞ LT=⎝⎜⎜⎜⎛l11l21l22……⋱ln1ln2⋮lnn⎠⎟⎟⎟⎞
那么:
(
a
11
a
12
…
a
1
n
a
21
a
22
…
a
2
n
⋮
⋮
⋱
⋮
a
n
1
a
n
2
…
a
n
n
)
=
(
l
11
l
21
l
22
⋮
⋮
⋱
l
n
1
l
n
2
…
l
n
n
)
(
l
11
l
21
…
l
n
1
l
22
…
l
n
2
⋱
⋮
l
n
n
)
=
(
l
11
2
…
…
…
…
l
11
l
21
l
21
2
+
l
22
2
…
…
…
l
11
l
31
l
31
l
21
+
l
32
l
22
l
31
2
+
l
32
2
+
l
33
2
…
…
⋮
⋮
⋮
⋱
⋮
l
11
l
n
1
l
n
1
l
21
+
l
n
2
l
22
l
n
1
l
31
+
l
n
2
l
32
+
l
n
3
l
33
…
∑
i
=
1
n
l
n
i
2
)
\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \\ \end{pmatrix}= \begin{pmatrix} l_{11} & \\ l_{21} & l_{22} \\ \vdots & \vdots & \ddots \\ l_{n1} & l_{n2} & \dots & l_{nn} \\ \end{pmatrix} \begin{pmatrix} l_{11} & l_{21} & \dots & l_{n1} \\ & l_{22} & \dots & l_{n2} \\ & & \ddots & \vdots \\ & & & l_{nn} \\ \end{pmatrix} \\ ~ \\ =\begin{pmatrix} l_{11}^2 & \dots & \dots & \dots & \dots \\ l_{11}l_{21} & l_{21}^2+l_{22}^2 & \dots & \dots & \dots \\ l_{11}l_{31} & l_{31}l_{21}+l_{32}l_{22} & l_{31}^2+l_{32}^2+l_{33}^2 & \dots & \dots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ l_{11}l_{n1} & l_{n1}l_{21}+l_{n2}l_{22} & l_{n1}l_{31}+l_{n2}l_{32}+l_{n3}l_{33} & \dots & \displaystyle\sum_{i=1}^nl_{ni}^2 \\ \end{pmatrix}
⎝⎜⎜⎜⎛a11a21⋮an1a12a22⋮an2……⋱…a1na2n⋮ann⎠⎟⎟⎟⎞=⎝⎜⎜⎜⎛l11l21⋮ln1l22⋮ln2⋱…lnn⎠⎟⎟⎟⎞⎝⎜⎜⎜⎛l11l21l22……⋱ln1ln2⋮lnn⎠⎟⎟⎟⎞ =⎝⎜⎜⎜⎜⎜⎜⎜⎜⎛l112l11l21l11l31⋮l11ln1…l212+l222l31l21+l32l22⋮ln1l21+ln2l22……l312+l322+l332⋮ln1l31+ln2l32+ln3l33………⋱…………⋮i=1∑nlni2⎠⎟⎟⎟⎟⎟⎟⎟⎟⎞
由于
A
\boldsymbol A
A 是对称矩阵,所以我们只看下三角:
(
a
11
a
21
a
22
a
31
a
32
a
33
⋮
⋮
⋮
⋱
a
n
1
a
n
2
a
n
3
…
a
n
n
)
=
(
l
11
2
l
11
l
21
l
21
2
+
l
22
2
l
11
l
31
l
31
l
21
+
l
32
l
22
l
31
2
+
l
32
2
+
l
33
2
⋮
⋮
⋮
⋱
l
11
l
n
1
l
n
1
l
21
+
l
n
2
l
22
l
n
1
l
31
+
l
n
2
l
32
+
l
n
3
l
33
…
∑
i
=
1
n
l
n
i
2
)
\begin{pmatrix} \textcolor{#FF0000}{a_{11}} \\ \textcolor{#FF0000}{a_{21}} & \textcolor{#DFCC00}{a_{22}} \\ \textcolor{#FF0000}{a_{31}} & \textcolor{#DFCC00}{a_{32}} & \textcolor{#00CC00}{a_{33}} \\ \textcolor{#FF0000}{\vdots} & \textcolor{#DFCC00}{\vdots} & \textcolor{#00CC00}{\vdots} & \textcolor{#0099FF}{\ddots} \\ \textcolor{#FF0000}{a_{n1}} & \textcolor{#DFCC00}{a_{n2}} & \textcolor{#00CC00}{a_{n3}} & \textcolor{#0099FF}{\dots} & \textcolor{#BB00FF}{a_{nn}} \\ \end{pmatrix}= \begin{pmatrix} \textcolor{#FF0000}{l_{11}^2} \\ \textcolor{#FF0000}{l_{11}l_{21}} & \textcolor{#DFCC00}{l_{21}^2+l_{22}^2} \\ \textcolor{#FF0000}{l_{11}l_{31}} & \textcolor{#DFCC00}{l_{31}l_{21}+l_{32}l_{22}} & \textcolor{#00CC00}{l_{31}^2+l_{32}^2+l_{33}^2} \\ \textcolor{#FF0000}{\vdots} & \textcolor{#DFCC00}{\vdots} & \textcolor{#00CC00}{\vdots} & \textcolor{#0099FF}{\ddots} \\ \textcolor{#FF0000}{l_{11}l_{n1}} & \textcolor{#DFCC00}{l_{n1}l_{21}+l_{n2}l_{22}} & \textcolor{#00CC00}{l_{n1}l_{31}+l_{n2}l_{32}+l_{n3}l_{33}} & \textcolor{#0099FF}{\dots} & \textcolor{#BB00FF}{\displaystyle\sum_{i=1}^nl_{ni}^2} \\ \end{pmatrix}
⎝⎜⎜⎜⎜⎜⎛a11a21a31⋮an1a22a32⋮an2a33⋮an3⋱…ann⎠⎟⎟⎟⎟⎟⎞=⎝⎜⎜⎜⎜⎜⎜⎜⎜⎛l112l11l21l11l31⋮l11ln1l212+l222l31l21+l32l22⋮ln1l21+ln2l22l312+l322+l332⋮ln1l31+ln2l32+ln3l33⋱…i=1∑nlni2⎠⎟⎟⎟⎟⎟⎟⎟⎟⎞
按照从左到右 (红黄绿蓝紫) 的顺序,逐列对应元素计算,便可将所有 L \boldsymbol L L 的元素 l i j l_{ij} lij 求出来
二、应用
2.1 线性方程求解
对于线性方程组 A X = B \boldsymbol A\boldsymbol X=\boldsymbol B AX=B,其中 A ∈ R n × n \boldsymbol A \in \mathbb R^{n\times n} A∈Rn×n 正定,且 A = A T \boldsymbol A=\boldsymbol A^{\mathrm T} A=AT,那么求解方程可以使用 Cholesky分解:
- 对矩阵 A \boldsymbol A A 进行 Cholesky分解 得, A = L L T \boldsymbol A = \boldsymbol L\boldsymbol L^{\mathrm T} A=LLT,则原方程化为 L L T X = B \boldsymbol L\boldsymbol L^{\mathrm T}\boldsymbol X=\boldsymbol B LLTX=B
- 令 L T X = Y \boldsymbol L^{\mathrm T}\boldsymbol X=\boldsymbol Y LTX=Y,此时,解下三角方程 L Y = B \boldsymbol L\boldsymbol Y=\boldsymbol B LY=B,求得 Y \boldsymbol Y Y
- 解上三角方程 L T X = Y \boldsymbol L^{\mathrm T}\boldsymbol X=\boldsymbol Y LTX=Y,求得 X \boldsymbol X X
通过 Cholesky分解 将 普通线性方程求解 改为两次简单的 三角阵方程组求解 ,降低计算复杂度。
2.2 求逆矩阵
三角矩阵的逆比较好求,从而可以很快求出原矩阵的逆。
三、扩展Cholesky分解
3.1 简介
从 1.2 节可以知道,矩阵
L
\boldsymbol L
L 对角线上的元素在计算时,都需要开方操作,增加计算量的同时还可能损失精度。引进一种 Cholesky的扩展分解方法:
A
=
L
D
L
T
\boldsymbol A = \boldsymbol L\boldsymbol D\boldsymbol L^{\mathrm T}
A=LDLT
证明:
我们已知,正定对称阵
A
\boldsymbol A
A 可以分解为:
A
=
L
L
T
\boldsymbol A = \boldsymbol L\boldsymbol L^{\mathrm T}
A=LLT
而 L \boldsymbol L L 可以写成:
L = ( l 11 l 21 l 22 ⋮ ⋮ ⋱ l n 1 l n 2 … l n n ) = ( 1 l 21 / l 11 1 ⋮ ⋮ ⋱ l n 1 / l 11 l n 2 / l 22 … 1 ) ( l 11 l 22 ⋱ l n n ) = d e f L 1 Λ \begin{aligned} \boldsymbol L &=\begin{pmatrix} l_{11} & \\ l_{21} & l_{22} \\ \vdots & \vdots & \ddots \\ l_{n1} & l_{n2} & \dots & l_{nn} \\ \end{pmatrix} \\ ~ \\ &=\begin{pmatrix} 1 & \\ l_{21}/l_{11} & 1 \\ \vdots & \vdots & \ddots \\ l_{n1}/l_{11} & l_{n2}/l_{22} & \dots & 1 \\ \end{pmatrix} \begin{pmatrix} l_{11} & \\ & l_{22} \\ & & \ddots \\ & & & l_{nn} \\ \end{pmatrix} \\ ~ \\ &\overset{\mathrm{def}}{=}\boldsymbol L_1 \boldsymbol \Lambda \end{aligned} L =⎝⎜⎜⎜⎛l11l21⋮ln1l22⋮ln2⋱…lnn⎠⎟⎟⎟⎞=⎝⎜⎜⎜⎛1l21/l11⋮ln1/l111⋮ln2/l22⋱…1⎠⎟⎟⎟⎞⎝⎜⎜⎛l11l22⋱lnn⎠⎟⎟⎞=defL1Λ
同理 L T = Λ L 1 T \boldsymbol L^\mathrm T = \boldsymbol \Lambda\boldsymbol L_1^\mathrm T LT=ΛL1T
那么 A = L L T = L 1 Λ 2 L 1 T = L 1 D L 1 T \boldsymbol A = \boldsymbol L\boldsymbol L^{\mathrm T}=\boldsymbol L_1\boldsymbol \Lambda^2\boldsymbol L_1^{\mathrm T} = \boldsymbol L_1\boldsymbol D\boldsymbol L_1^{\mathrm T} A=LLT=L1Λ2L1T=L1DL1T
3.2 分解方法
记:
A
=
(
a
11
a
12
…
a
1
n
a
21
a
22
…
a
2
n
⋮
⋮
⋱
⋮
a
n
1
a
n
2
…
a
n
n
)
L
=
(
1
l
21
1
⋮
⋮
⋱
l
n
1
l
n
2
…
1
)
L
T
=
(
1
l
21
…
l
n
1
1
…
l
n
2
⋱
⋮
1
)
D
=
(
d
1
d
2
⋱
d
n
)
\boldsymbol A= \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \\ \end{pmatrix} \\ ~ \\ \boldsymbol L= \begin{pmatrix} 1 & \\ l_{21} & 1 \\ \vdots & \vdots & \ddots \\ l_{n1} & l_{n2} & \dots & 1 \\ \end{pmatrix} ~~ \boldsymbol L^\mathrm T= \begin{pmatrix} 1 & l_{21} & \dots & l_{n1} \\ & 1 & \dots & l_{n2} \\ & & \ddots & \vdots \\ & & & 1 \\ \end{pmatrix} ~~ \boldsymbol D= \begin{pmatrix} d_1 & & & \\ & d_2 & & \\ & & \ddots & \\ & & & d_n \\ \end{pmatrix}
A=⎝⎜⎜⎜⎛a11a21⋮an1a12a22⋮an2……⋱…a1na2n⋮ann⎠⎟⎟⎟⎞ L=⎝⎜⎜⎜⎛1l21⋮ln11⋮ln2⋱…1⎠⎟⎟⎟⎞ LT=⎝⎜⎜⎜⎛1l211……⋱ln1ln2⋮1⎠⎟⎟⎟⎞ D=⎝⎜⎜⎛d1d2⋱dn⎠⎟⎟⎞
那么:
(
a
11
a
12
…
a
1
n
a
21
a
22
…
a
2
n
⋮
⋮
⋱
⋮
a
n
1
a
n
2
…
a
n
n
)
=
(
1
l
21
1
⋮
⋮
⋱
l
n
1
l
n
2
…
1
)
(
d
1
d
2
⋱
d
n
)
(
1
l
21
…
l
n
1
1
…
l
n
2
⋱
⋮
1
)
=
(
d
1
…
…
…
…
d
1
l
21
d
1
l
21
2
+
d
2
…
…
…
d
1
l
31
d
1
l
31
l
21
+
l
32
l
22
d
1
l
31
2
+
d
2
l
32
2
+
d
3
…
…
⋮
⋮
⋮
⋱
⋮
d
1
l
n
1
d
1
l
n
1
l
21
+
d
2
l
n
2
d
1
l
n
1
l
31
+
d
2
l
n
2
l
32
+
d
3
l
n
3
…
d
n
+
∑
i
=
1
n
−
1
d
i
l
n
i
2
)
\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \\ \end{pmatrix}= \begin{pmatrix} 1 & \\ l_{21} & 1 \\ \vdots & \vdots & \ddots \\ l_{n1} & l_{n2} & \dots & 1 \\ \end{pmatrix} \begin{pmatrix} d_1 & & & \\ & d_2 & & \\ & & \ddots & \\ & & & d_n \\ \end{pmatrix} \begin{pmatrix} 1 & l_{21} & \dots & l_{n1} \\ & 1 & \dots & l_{n2} \\ & & \ddots & \vdots \\ & & & 1 \\ \end{pmatrix} \\ ~ \\ =\begin{pmatrix} d_1 & \dots & \dots & \dots & \dots \\ d_1l_{21} & d_1l_{21}^2+d_2 & \dots & \dots & \dots \\ d_1l_{31} & d_1l_{31}l_{21}+l_{32}l_{22} & d_1l_{31}^2+d_2l_{32}^2+d_3 & \dots & \dots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ d_1l_{n1} & d_1l_{n1}l_{21}+d_2l_{n2} & d_1l_{n1}l_{31}+d_2l_{n2}l_{32}+d_3l_{n3} & \dots & \displaystyle d_n+\sum_{i=1}^{n-1}d_il_{ni}^2 \\ \end{pmatrix}
⎝⎜⎜⎜⎛a11a21⋮an1a12a22⋮an2……⋱…a1na2n⋮ann⎠⎟⎟⎟⎞=⎝⎜⎜⎜⎛1l21⋮ln11⋮ln2⋱…1⎠⎟⎟⎟⎞⎝⎜⎜⎛d1d2⋱dn⎠⎟⎟⎞⎝⎜⎜⎜⎛1l211……⋱ln1ln2⋮1⎠⎟⎟⎟⎞ =⎝⎜⎜⎜⎜⎜⎜⎜⎜⎛d1d1l21d1l31⋮d1ln1…d1l212+d2d1l31l21+l32l22⋮d1ln1l21+d2ln2……d1l312+d2l322+d3⋮d1ln1l31+d2ln2l32+d3ln3………⋱…………⋮dn+i=1∑n−1dilni2⎠⎟⎟⎟⎟⎟⎟⎟⎟⎞
计算的方式与之前类似,从左至右直接逐列对应计算即可。文章来源:https://www.toymoban.com/news/detail-618804.html
可以看出来这种方式不需要开方。文章来源地址https://www.toymoban.com/news/detail-618804.html
到了这里,关于Cholesky分解、乔列斯基分解的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!