哈工大计算机网络课程网络安全基本原理详解之:消息完整性与数字签名

这篇具有很好参考价值的文章主要介绍了哈工大计算机网络课程网络安全基本原理详解之:消息完整性与数字签名。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

哈工大计算机网络课程网络安全基本原理详解之:消息完整性与数字签名

这一小节,我们继续介绍网络完全中的另一个重要内容,就是消息完整性,也为后面的数字签名打下基础。

报文完整性

首先来看一下什么是报文完整性。

报文完整性,也称为消息完整性(message integrity),有时也称为报文/消息认证(或报文鉴别),目标:

  • 证明报文确实来自声称的发送方

    比如接收端在收到报文时能够确认,报文是由指定发送方发送的。这一过程也是与我们上一节中介绍的身份认证相关的。

  • 验证报文在传输过程中没有被篡改。

  • 预防报文的时间、顺序被篡改。

  • 预防报文持有期被修改。

    比如Bob给Alice发报文,还应该预防Alice在持有报文时,有意或无意修改报文。

  • 预防报文在发送/接收时对报文本身的抵赖

    • 发送方否认。比如发送方否认发送过这个报文,或否认发送报文的内容。
    • 接收方否认。比如接收方否认收到过这个报文,或否认接收报文的内容。

密码散列函数

在解决报文完整性的问题中,需要使用到一个非常重要的概念,就是密码散列函数。

密码散列函数(Cryptographic Hash Function):H(m)。

用H(m)来表示利用密码散列函数对报文m进行的散列运算。

作为密码散列函数,与我们一般性的散列函数,具有以下一些特征:

  • 散列算法公开

  • H(m)能够快速计算

  • 对任意长度报文进行多对一映射,均产生定长输出

  • 对于任意报文无法预知其散列值

  • 不同报文不能产生相同的散列值

  • 单向性:无法根据散列值倒推出报文

    • 即对于给定散列值h,无法计算找到满足h=H(m)的报文m
  • 抗弱碰撞性(Weak Collision Resistence-WCR)

    • 对于给定报文x,计算上不可能找到y且y不等于x,使用H(x) = H(y)
  • 抗强碰撞性(Strong Collision Resistence-SCR)

    • 在计算中,不可能找到任意两个不同报文x和y(x≠y),使得H(x) = H(y)。

密码散列函数对报文完整性的校验是至关重要的。

作为与一般性的散列函数的对比,我们来看一个例子。

在之前讲解IP协议中,会有一个16比特的checksum校验和来在接收端判断数据报是否有修改。在这种校验和的计算中,其实也具备散列函数的某些属性:

  • 多对一映射
  • 对于任意报文,产生固定长度的散列值(16-bit校验和)

但是它并不能作为密码散列函数,因为对于给定的报文及其散列值,很容易找到另一个具有相同散列值的不同报文。比如下面这个例子:

哈工大计算机网络课程网络安全基本原理详解之:消息完整性与数字签名,计算机网络,计算机网络,web安全,安全

散列函数算法

通过上面的介绍可以看出,密码散列函数的要求是比较严格的,需要经过精心设计。目前,在网络安全领域,使用的比较常见的有以下两个函数:

  • MD5:被广泛应用的散列函数(RFC 1321)
    • 通过4个步骤,对任意长度的报文输入,计算输出128位的散列值。
    • MD5不是足够安全。在1996年,Dobbertin找到了两个不同的512-bit块,在MD5计算下产生了相同的散列值。
  • SHA-1(Secure Hash Algorithm)
    • 另一个相对更安全的散列函数
    • US标准
    • SHA-1要求输入消息长度<264
    • SHA-1的散列值为160位
    • 速度慢于MD5,安全性优于MD5

报文摘要

报文摘要实际上是利用上面的密码散列函数,作用于某一任意长度的报文m,得到一个固定长度的散列值,通常把这个散列值称为报文摘要(message digest),记为H(m)。

哈工大计算机网络课程网络安全基本原理详解之:消息完整性与数字签名,计算机网络,计算机网络,web安全,安全

这个报文摘要对原报文来说,是具有非常重要的意义的。重要的意义在于,报文摘要可以作为报文m的数字指纹(fingerprint)。

报文认证

有了上面的基础概念后,接下来我们就着重讨论下如何实现报文完整性的认证。

简单方案

简单方案:报文+报文摘要—>扩展报文(m, H(M))

上述简单方案利用了密码散列函数和报文摘要来实现。实际上,就是在给对方发送报文时,利用密码散列函数根据该报文内容,计算出一个报文摘要。此时,发送的报文内容除了其本身原有内容外,还包含一个报文摘要。两者构造出一个扩展报文,发送给对方。

接收方在收到该扩展报文后,根据同样的密码散列函数,根据报文内容计算得到一个散列值,然后跟报文摘要进行比对。如果一致,说明报文在传输过程中没有被修改,如果不一致,则说明已经被修改。

整体的大致过程如下所示:

哈工大计算机网络课程网络安全基本原理详解之:消息完整性与数字签名,计算机网络,计算机网络,web安全,安全

为了在报文认证中,除了确保报文在传输过程中没有发生过改变外,还要认证报文的发送方确实是指定的真实发送方,而不是第三方入侵者或伪造的(身份认证),还需要对上述方案进行改进。

报文认证码MAC

报文认证码MAC:(Message Authentication Code)

实现原理:

  • 引入了一个报文认证密码的概念
  • 此时,一个扩展报文(m, H(m+s))包括了:原始报文m + 认证密钥s + 密码散列函数H

在使用这种方案下,报文认证过程大致如下所示:

  • 发送端在发送报文中,利用密码散列函数H,对原始报文内容m和认证密码s(一般就是一个字符串或比特串)一起共同生成一个报文摘要H(m+s)。
  • 该报文摘要与原始报文一起构成一个扩展报文(m ,H(m,s))
  • 接收端收到该报文后,分离出原始报文和报文摘要两部分。
  • 对于原始报文,利用相同的密码散列函数和认证密钥s,得到一个散列值H(m,s)
  • 同样的,将该散列值与报文摘要的值比对,如果匹配,则报文完整性成功认证。否则,认证失败。

哈工大计算机网络课程网络安全基本原理详解之:消息完整性与数字签名,计算机网络,计算机网络,web安全,安全

这里为什么就能够确认报文是来自指定的真实发送方,而不是伪造或第三方入侵者呢?因为,这里引入了密钥的概念,而这对密钥只有发送方和接收方所持有。由于密码散列函数的特殊性,只有该密钥才能生成相应的报文摘要,从而保证了报文认证的可靠性。

报文验证码MAC在一定程度上解决了报文完整性校验和身份认证问题,但是报文完整性里涉及的其他问题,还很难解决。比如,接收端在持有报文时,由于它有密码s,因此,它可以任意构造一个报文内容m’,并利用该密钥s生成相应的报文摘要,然后伪造说这是发送方发送的报文。这里的问题,就涉及到我们开篇报文完整性要求中说的,预防报文持有期被修改和预防抵赖。

为了解决这些问题,就需要引入我们接下来介绍的数字签名概念。

数字签名

上面我们最后说到,作为报文验证码MAC实际上有一些其他的报文完整性问题还未解决。比如,涉及到下面这些问题。

Q:如何解决下列与报文完整性相关的问题?

  • 否认:发送方不承认自己发送过某一报文。
  • 伪造:接收方自己伪造一份报文,并声称来自发送方
  • 冒充:某个用户冒充另一个用户接收后发送报文
  • 篡改:接收方对收到的信息进行篡改。

这些问题,简单依赖单一的报文认证码是很难解决的。目前比较有效的,也是在网络安全中使用比较广泛的解决方案,就是数字签名(Digital signatures)。

  • 数字签名技术是实现安全电子交易的核心技术之一。
  • 可验证性(verifiable),验证报文是否被修改过。
  • 不可伪造性(unforgeable)
  • 不可抵赖性(non-repudiation)

数字签名的简单实现原理

显然我们很容易想到,**签名的主要目的是为了预防修改,即签名本身是不能被修改的,被签名的内容是不能被修改的。**就跟我们日常生活中,对一个文件的签名,往往就是签上自己的姓名,甚至手印,而且要保存原件,就是为了签名后,签名和文件内容都是不能被修改的。

因此,与日常生活中的签名行为联系起来的话,网络安全中的数字签名技术,实际上就是在发送的报文(相当于文件),签上一个数字名称,这个名称保证了报文的完整性,同时也标识着身份认证。同时,这个签名一定是唯一特殊,不可被修改的,从而保证不可伪造和不可抵赖性。

因此,为了实现数字签名,就需要借助于上面介绍的加密技术。报文加密技术是数字签名的基础。

同时,对于加密技术,首先不能选取对称加密算法,因为对称加密算法接收和发送双方使用的是同一个密钥,也就是说接收方是可以利用这个密码对接收报文进行修改的,也就是我们上面说的报文验证码的问题。

因此,对于加密算法的算法一定需要选择非对称加密算法(公钥技术)。此时,假设Bob要想Alice发送带有数字签名的信息,就可以利用其私钥对报文m进行加密,创建签名报文,KB-(m)。

整体流程如下所示:

哈工大计算机网络课程网络安全基本原理详解之:消息完整性与数字签名,计算机网络,计算机网络,web安全,安全

作为Alice,实际上接收了两份报文:一份是明文原始报文m,另一份是Bob用私钥加密的签名报文。之后,Alice的响应帧流程大致如下所示:

  • Alice利用Bob的公钥KB+解密KB-(m),并检验KB+(KB-(m))= m来证实报文m确实是由Bob签名的。

  • 如果KB+(KB-(m))= m成立,则签名m的一定是Bob的私钥

  • 于是:

    Alice可以证实:

    • Bob签名了m
    • 没有其他人签名m的可能
    • Bob签名的是报文m而不是其他报文m‘

    不可抵赖:

    • Alice可以持有报文m和签名KB-(m),必要是可以提交给法院证明是Bob签名的报文m。

实际上,通过上面的介绍我们细想就能发现,实际上报文验证码MAC和数字签名技术的实现区分,实际上也就是对称加密算法和非对称加密算法实现原理的区别。因为有了非对称加密算法,使得每个用户都可以保留自己的私钥,同时公开一个公钥来进行解密。而这个私钥就成了身份认证的唯一标识,比如身份证ID,或指纹。从而保证了报文传输过程中的消息完整性和身份认证。

签名报文摘要

上述简单数字签名的方案有一个较大的缺点,就是在利用私钥对报文加密后(签名后),该签名要跟着报文一起发送给接收端。一来,传输的报文量相当于是两倍的报文,造成信道资源消耗。二来,接收方在对签名解密时,原始报文往往比较大,解密速度也会比较慢。因此,可以设计一些方案来改进这个签名过程。

怎么做呢?可以联想到上面提到过的报文摘要,对于报文摘要来说,它可以作为报文的数字指纹这样一个特征,也就是可以唯一标识一个报文。换句话说,报文摘要其实就与原始报文一一对应。

因此,显而易见,我们在签名的时候可以不对整个原始报文进行签名,而改为对这个报文摘要进行签名,也可以实现同样的效果。

因此,目前大部分的数字签名,使用的都是报文摘要签名的方法。

接下来我们来看一下,利用报文摘要数字签名的实现流程:

Bob发送数字签名的报文:

  • Bob在发送报文时,利用密码散列函数,对报文生成报文摘要H(m)
  • Bob利用自己的私钥,对报文摘要进行签名,得到签名后的报文摘要:KB-(H(m))
  • 把该签名后的报文摘要和报文一起,组成扩展报文(m, KB-(H(m)))发送给接收端。

Alice核实签名以及数字签名报文的完整性:

  • Alice分离出原始报文本身,和签名报文摘要
  • Alice利用相同的密码散列函数,根据原始报文,生成报文摘要
  • 再利用Bob的公钥对签名报文摘要进行解密
  • 将解密后的报文摘要与刚刚生成的报文摘要进行比对,判断两者是否相同。

哈工大计算机网络课程网络安全基本原理详解之:消息完整性与数字签名,计算机网络,计算机网络,web安全,安全文章来源地址https://www.toymoban.com/news/detail-618850.html

到了这里,关于哈工大计算机网络课程网络安全基本原理详解之:消息完整性与数字签名的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 哈工大计算机网络课程局域网详解之:交换机概念

    在介绍完局域网中最具代表性的以太网技术后,接下来我们继续来看一下在局域网中使用非常广泛也是非常重要的网络设备:交换机。 本节主要面向以太网来介绍其中使用的交换机。 作为以太网交换机来说,是一个典型的数据链路层设备,可以实现对链路层数据帧的存储-转

    2024年02月15日
    浏览(19)
  • 哈工大计算机网络课程局域网详解之:无线局域网

    本节介绍一下平时经常使用的一个无线局域网技术,也就是通常我们使用的wifi。 wifi是IEEE 802.11这样一个系列标准所定义的无线局域网。作为802.11局域网来说,实际上存在很多版本: 802.11b 2.4-2.5GHz免费频段(unliebensed spectrum) 最高速率:11Mbps 物理层采用直接序列扩频(DSSS)

    2024年02月15日
    浏览(19)
  • 哈工大计算机网络课程网络层协议详解之:互联网控制报文协议(ICMP)

    在互联网中,IP数据报的传输很容易出现差错,当出现差错时,最简单的处理办法就是对该IP数据报进行丢弃。但是,并不是直接丢弃就完了,为了让源主机感知到数据报出现差错,当数据报被丢弃时,IP网络会借助于ICMP协议,向发送数据报的源主机发送一个ICMP差错报文。本

    2024年02月12日
    浏览(19)
  • 哈工大计算机网络课程网络层协议详解之:路由算法概述与链路状态路由算法

    在前面的小节中,我们介绍了网络中路由器的路由与转发等功能。我们说 作为网络层,从功能上来说,核心功能就是要实现路由和转发。 对于转发来说,实际上就是路由器根据存储的转发表,将目的地址转发到对应的输出链路上去。在这个过程中,完成转发的重要依据,就

    2024年02月11日
    浏览(19)
  • 哈工大计算机网络课程数据链路层协议详解之:多路访问控制(MAC)协议

    在上一小节介绍完数据链路层功能和所提供的服务后,接下来我们介绍一个在 数据链路层非常重要的一个协议:多路访问控制MAC协议。 多路访问控制主要是为了解决一类链路的使用问题。作为网路中的链路,大致可以分为以下两类: 点对点链路 顾名思义,链路只连接两个相

    2024年02月15日
    浏览(22)
  • 哈工大计算机网络课程网络安全基本原理详解之:消息完整性与数字签名

    这一小节,我们继续介绍网络完全中的另一个重要内容,就是消息完整性,也为后面的数字签名打下基础。 首先来看一下什么是报文完整性。 报文完整性,也称为消息完整性(message integrity),有时也称为报文/消息认证(或报文鉴别),目标: 证明报文确实来自声称的发送

    2024年02月15日
    浏览(17)
  • 哈工大计算机网络传输层协议详解之:TCP协议

    哈工大计算机网络课程传输层协议详解之:可靠数据传输的基本原理 哈工大计算机网络课程传输层协议详解之:流水线机制与滑动窗口协议 哈工大计算机网络课程传输层协议详解之:拥塞控制原理剖析 点对点通信 一个发送方、一个接收方 可靠的、按序的字节流 流水线机制

    2024年02月10日
    浏览(21)
  • 哈工大计算机网络传输层详解之:流水线机制与滑动窗口协议

    哈工大计算机网络课程传输层协议详解之:可靠数据传输的基本原理 哈工大计算机网络课程传输层协议详解之:TCP协议 哈工大计算机网络课程传输层协议详解之:拥塞控制原理剖析 在上一节中我们逐步分析了可靠传输协议的设计过程,最后讲到rdt3.0的设计和实现机制。但是

    2024年02月10日
    浏览(24)
  • 哈工大计算机网络传输层协议详解之:可靠数据传输的基本原理

    哈工大计算机网络课程传输层协议详解之:流水线机制与滑动窗口协议 哈工大计算机网络课程传输层协议详解之:TCP协议 哈工大计算机网络课程传输层协议详解之:拥塞控制原理剖析 什么是可靠? 不错、不丢、不乱 可靠数据传输协议 可靠数据传输对应用层、传输层、链路

    2024年02月12日
    浏览(19)
  • 哈工大 计算机系统 二进制炸弹实验报告

    实验报告 实 验(三) 题     目  Binary Bomb          二进制炸弹   专       业      计算机学院          学    号               班    级                学       生              指 导 教 师                实 验 地 点        实 验 日 期     

    2023年04月15日
    浏览(21)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包