用C语言构建一个手写数字识别神经网络

这篇具有很好参考价值的文章主要介绍了用C语言构建一个手写数字识别神经网络。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

用C语言构建一个手写数字识别神经网络,神经网络,人工智能,深度学习,c语言

用C语言构建一个手写数字识别神经网络,神经网络,人工智能,深度学习,c语言

(原理和程序基本框架请参见前一篇 "用C语言构建了一个简单的神经网路")

1.准备训练和测试数据集
从http://yann.lecun.com/exdb/mnist/下载手写数字训练数据集, 包括图像数据train-images-idx3-ubyte.gz 和标签数据 train-labels-idx1-ubyte.gz.
分别将他们解压后放在本地文件夹中,解压后文件名为train-images-idx3-ubyte和train-labels-idx1-ubyte. 训练数据集一共包含了6万个手写数字灰度图和对应的标签.
为图方便,我们直接从训练数据集中提取5000个作为测试数据.当然,实际训练数据中并不包含这些测试数据.


2.设计神经网络
采用简单的三层全连接神经网络,包括输入层(wi),中间层(wm)和输出层(wo).这里暂时不使用卷积层,下次替换后进行比较.
输入层: 一共20个神经元,每一张手写数字的图片大小为28x28,将全部展平后的784个灰度数据归一化,即除以255.0, 使其数值位于[0 1]区间,这样可以防止数据在层层计算和传递后变得过分大.将这784个[0 1]之间的数据与20个神经元进行全连接.神经元激活函数用func_ReLU.
中间层: 一共20个神经元,与输入层的20个神经元输出进行全连接.神经元激活函数用func_ReLU.
输出层: 一共10个神经元,分别对应0~9数字的可能性,与中间层的20个神经元输出进行全连接.层的激活函数用func_softmax.
特别地,神经元的激活函数在new_nvcell()中设定,层的激活函数直接赋给nerve_layer->transfunc.
损失函数: 采用期望和预测值的交叉熵损失函数func_lossCrossEntropy. 损失函数在nvnet_feed_forward()中以参数形式输入.

3.训练神经网络
由于整个程序是以nvcell神经元结构为基础进行构建的,其不同于矩阵/张量形式的批量数据描述,因此这个神经网络只能以神经元为单位,逐个逐层地进行前向和反向传导.
相应地,这里采用SGD(Stochastic Gradient Descent)梯度下降更新法,即对每一个样本先进行前向和反向传导计算,接着根据计算得到的梯度值马上更新所有参数.与此不同,mini-batch GD采用小批量样本进行前向和反向传导计算,然后根据累积的梯度数值做1次参数更新.显然,采用SGD方法参数更新更加频繁,计算时间相应也变长了.不过,据网文分析,采用SGD也更容易趋近全局最优解,尽管逼近的途径会比较曲折.本文程序中的分批计算是为了方便监控计算过程和打印中间值.(当然,要实现mini-batch GD也是可以的,先完成一批量样本的前后传导计算,期间将各参数的梯度累计起来,  最后取其平均值更新一次参数.)
这里使用平均损失值mean_err<=0.0025来作为训练的终止条件,为防止无法收敛到此数值,同时设置最大的epoch计数.
训练的样本数量由TRAIN_IMGTOTAL来设定, 训练时,先读取一个样本数据和一个标签,分别存入到data_input[28*28]和data_target[10], 为了配合应用softmax函数,这里data_target[]是one-hot编码格式.读入样本数据后先进行前向传导计算nvnet_feed_forward(),接着进行反向传导计算nvnet_feed_backward(), 最后更新参数nvnet_update_params(), 这样就完成了一个样本的训练.如此循环计算,完成一次所有样本的训练(epoch)后计算mean_err, 看是否达到预设目标.

4.测试训练后的神经网络
训练完成后,对模型进行简单评估.方法就是用训练后的模型来预测(predict)或推理(infer)前面的测试数据集中的图像数据,将结果与对应的标签值做对比.
同样,将一个测试样本加载到data_input[], 跑一次nvnet_feed_forward(),直接读取输出层的wo_layer->douts[k] (k=0~9),如果其值大于0.5,就认为模型预测图像上的数字是k.

5.小结
取5万条训练样本进行训练,训练后再进行测试,其准确率可接近94%.
与卷积神经网络相比较,为达到相同的结果,全连接的神经网络的所需要的训练时间会更长.

6.实验和改进
可以先将28*28的图片下采样到14*14后再连接到输入层.这样可以提高速度.

可以增加神经网络层数进行验证。

可以试着调整输入层和中间层的神经元数目.

也可以试着调整单个神经元的输入连接方式...

源代码:
https://github.com/midaszhou/nnc
下载后编译:
make TEST_NAME=test_nnc2

用C语言构建一个手写数字识别神经网络,神经网络,人工智能,深度学习,c语言

参考资料:
1.  MNIST手写数字集 http://yann.lecun.com/exdb/mnist/
2.  peterroelants神经网络例子 https://peterroelants.github.io/posts/neural-network-implementation-part05/

下一篇: 用C语言构建一个数字识别卷积神经网络文章来源地址https://www.toymoban.com/news/detail-619305.html

到了这里,关于用C语言构建一个手写数字识别神经网络的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • 手写数字识别--神经网络实验

    手写数字识别--神经网络实验

     我自己搞的代码,预测精度才94% 神经网络实验报告源码.zip - 蓝奏云  老师给的实验源码答案和资料,预测精度高达99% 深度学习实验报告.zip - 蓝奏云 上深度学习的课程,老师布置了一个经典的实验报告,我做了好久才搞懂,所以把实验报告放到CSDN保存,自己忘了方便查阅

    2024年02月06日
    浏览(11)
  • 神经网络基础-手写数字识别

    神经网络基础-手写数字识别

    基本原理 图像本质上被认为是一个矩阵,每个像素点都是一个对应的像素值,相当于在多维数据上进行相关的归类或者其他操作。 线性函数 线性函数的一个从输入到输出的映射,用于给目标一个每个类别对应的得分。 图像 ( 32 ∗ 32 ∗ 3 ) → f ( x , W ) Y 图像(32*32*3) stackrel{

    2024年02月02日
    浏览(9)
  • 手写数字识别-基于卷积神经网络

    手写数字识别-基于卷积神经网络

    🌞欢迎来到机器学习的世界  🌈博客主页:卿云阁  💌欢迎关注🎉点赞👍收藏⭐️留言📝 🌟本文由卿云阁原创! 🌠本阶段属于练气阶段,希望各位仙友顺利完成突破 📆首发时间:🌹2021年6月5日🌹 ✉️希望可以和大家一起完成进阶之路! 🙏作者水平很有限,如果发

    2024年02月10日
    浏览(7)
  • 【神经网络手写数字识别-最全源码(pytorch)】

    【神经网络手写数字识别-最全源码(pytorch)】

    Torch安装的方法 学习方法 1.边用边学,torch只是一个工具,真正用,查的过程才是学习的过程 2.直接就上案例就行,先来跑,遇到什么来解决什么 Mnist分类任务: 网络基本构建与训练方法,常用函数解析 torch.nn.functional模块 nn.Module模块 读取Mnist数据集 会自动进行下载 784是m

    2024年02月14日
    浏览(20)
  • 【深度学习】2-4 神经网络-手写数字识别

    在实现对手写数字图像的分类,可以先假设学习已经全部结束,我们使用学习到的参数,先实现神经网络的“推理处理”。该处理也称为神经网络的 前向传播 。 和求解机器学习问题的步骤(分成学习和推理两个阶段进行)一样 使用神经网络解决问题时,也需要 首先使用训练数

    2024年02月09日
    浏览(9)
  • PyTorch训练简单的全连接神经网络:手写数字识别

    数据集:MNIST 该数据集的内容是手写数字识别,其分为两部分,分别含有60000张训练图片和10000张测试图片 神经网络:全连接网络 【1】https://www.youtube.com/watch?v=Jy4wM2X21u0list=PLhhyoLH6IjfxeoooqP9rhU3HJIAVAJ3Vzindex=3

    2024年02月16日
    浏览(14)
  • CNN卷积神经网络实现手写数字识别(基于tensorflow)

    CNN卷积神经网络实现手写数字识别(基于tensorflow)

    卷积网络的 核心思想 是将: 局部感受野 权值共享(或者权值复制) 时间或空间亚采样 卷积神经网络 (Convolutional Neural Networks,简称: CNN )是深度学习当中一个非常重要的神经网络结构。它主要用于用在 图像图片处理 , 视频处理 , 音频处理 以及 自然语言处理 等等。

    2024年02月11日
    浏览(13)
  • pytorch集智-5手写数字识别器-卷积神经网络

    pytorch集智-5手写数字识别器-卷积神经网络

    简称:CNN,convolutional neural network 应用场景:图像识别与分类(CNN),看图说话(CNN+RNN)等 优越性:和多层感知机相比,cnn可以识别独特的模式,可以自动从数据中提取特征。一般机器学习需要特征工程,cnn可以自动识别,极大代替或取代了特征工程 和多层感知机原理不同

    2024年01月19日
    浏览(12)
  • 卷积神经网络(CNN)入门:使用Python实现手写数字识别

    在上一篇文章中,我们介绍了如何使用Python实现一个简单的前馈神经网络。本文将重点介绍卷积神经网络(CNN),这是一种在计算机视觉任务中表现优异的深度学习模型。我们将从卷积神经网络的基本原理开始,介绍卷积层、池化层和全连接层等概念,然后使用Python和Keras库

    2023年04月15日
    浏览(9)
  • (神经网络)MNIST手写体数字识别MATLAB完整代码

    (神经网络)MNIST手写体数字识别MATLAB完整代码

            在此次实验中,笔者针对 MNIST 数据集,利用卷积神经网络进行训练与测试,提 出了一系列的改进方法,并对这些改进的方法进行了逐一验证,比较了改进方法与浅层 神经网络的优劣。         首先,笔者对实验中所用的 MNIST 数据集进行了简单的介绍;接着,

    2024年02月03日
    浏览(14)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包