TCP/IP协议详解(二)

这篇具有很好参考价值的文章主要介绍了TCP/IP协议详解(二)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录内容
TCP协议的可靠性
TCP的三次握手
TCP的四次挥手
C#中,TCP/IP建立
三次握手和四次挥手常见面试题

在上一篇文章中讲解了TCP/IP的由来以及报文格式,详情请见上一篇文章,现在接着来讲讲TCP/IP的可靠性以及通过代码的实现。
在TCP首部的后面是数据部分,数据部分是可选的,可以有,也可以没有。当一个连接建立和一个连接终止时,双方交换的报文段仅为TCP的报文首部。假如发送方没有数据要发送,也没有使用任何数据的首部来确认收到的数据,例如在处理发送数据超时时,也会发送不带数据的报文段。
**

TCP协议的可靠性

**
主要靠以下几点来进行保障:
(一)应用数据分割成TCP认为最适合发送的数据块。这部分是通过MSS(最大数据包长度)选项来控制的,这种机制被称为协商机制,规定了传输的最大数据块长度。但是,MSS只能出现在SYN报文段中,若服务端不接收客户端的MSS值,则MSS长度定为536字节。通常来讲,MSS值是越大越好,有利于提高网络利用率。
(二)重传机制。设置定时器,等待确认包,如果定时器超时还未收到确认包,则报文重传。
(三)对首部和数据进行校验。
(四)接收端对收到的数据进行排序,然后传输给应用层。
(五)接收端丢弃重复的数据。
(六)TCP提供流量控制,主要是通过滑动窗口来实现流量控制。
经过上一篇文章和以上的讲解,TCP协议的数据帧格式就讲解完毕。
**

TCP的三次握手

**
我们都知道,TCP在建立连接和断开连接时,需要进行三次握手和四次挥手,那么我们可以进行思考,三次握手和四次挥手分别都做了些什么?又是如何进行的呢?
三次握手的过程:
TCP建立连接时,双方需要经过三次握手,具体过程如下:
1、第一次握手:Client端进入SYN_SEND状态,发送一个SYN帧来主动打开传输通道,该帧的SYN标志位被设置为1,同时会带上Client分配好的SN序列号,该SN是根据时间产生的一个随机值,通常情况下每隔4ms会加1。同时,SYN帧还会带一个MSS(最大报文段长度)可选项的值,表示客户端发送出去的最大数据块的长度;
2、第二次握手:Server端在收到SYN帧以后,会进入SYN_RCVD状态,同时返回SYN+ACK帧给Client,主要目的在于通知Client,Server端已收到了SYN消息,现在需要进行确认。Server端发出的SYN+ACK帧的ACK标志位被设置为1,其确认序号AN值被设置为Client端的SN+1;SYN+ACK帧的SYN标志位被设置为1,SN值为Server端生成的SN序号;SYN+ACK帧的MSS表示的是Server端的最大数据长度;
3、第三次握手:Client在收到Server的第二次握手SYN+ACK确认帧之后,首先会将自己的状态从SYN_SENT变为ESTABLISHED,表示自己方向的连接通道已经建立成功,Client可以发送数据到Server端。Client发送ACK帧到Server端,该ACK帧的ACK标志位被设置为1,其确认序号AN值被设置为Server端的SN序列号+1。另外,Client可能会将ACK帧和第一帧要发送的数据,合并到一起发送给Server端;
4、Server端在收到Client的ACK帧之后,会从SYN_RCVD状态进入ESTABLISHED状态,至此,Server端方向的通道连接建立成功,Server端可以发送数据到Client端,TCP的全双工连接建立成功。
TCP/IP协议详解(二),笔记,tcp/ip,网络,网络协议

Client和Server完成了三次握手之后,双方就进入了数据传输阶段。数据传输完成后,连接将断开,连接断开的过程需要经过四次挥手。
**

TCP的四次挥手

**
Client端和Server端完成数据通信后,TCP连接开始处于断开的过程,在这个过程中,连接的每个端都能独立地、主动的发起,断开的过程中,TCP协议使用四次挥手操作。
四次挥手具体过程如下:
1、第一次挥手:主动断开方(客户端或者服务端),向对方发送一个FIN结束请求报文,此报文的FIN标志位被设置为1,并且正确设置Sequence Number(序列号)和Acknowledgment Number(确认号)。发送完成后,主动断开方进入FIN_WAIT_1状态,表示主动断开方没有数据要发送给对方,准备关闭连接;
2、第二次挥手:在收到主动断开方发送的FIN断开请求报文后,被动断开方会发送一个ACK响应报文,报文的AN值为主动断开请求方报文的SN+1,该ACK确认报文的含义是:我同意你的连接断开请求。然后,被动断开方进入CLOSE_WAIT(关闭等待)状态,TCP协议服务会通知高层的应用进程,对方向本地方向的连接已经关闭,对方已经没有数据可以发送,若本地还要发送数据给对方,对方依然会接收。被动断开方的CLOSE_WAIT(关闭等待)还要持续一段时间,也就是整个CLOSE_WAIT状态持续的时间。主动断开方在收到ACK报文后,由FIN_WAIT_1转换为FIN_WAIT_2状态;
3、第三次挥手:在发送完ACK报文后,被动断开方还可以继续完成数据发送,等待剩余数据发送完成后,或者CLOSE_WAIT(关闭等待)截至后,被动断开方向主动断开方发送一个FIN+ACK结束响应报文,表示被动断开方的数据已发送完毕,被动断开方进入LAST_ACK状态;
4、第四次挥手:主动断开方在收到FIN+ACK断开响应报文后,还需要进行最后确认,向被动断开方发送一个ACK确认报文,然后进入TIME_WAIT状态,等待超时后最终关闭连接。处于TIME_WAIT状态的主动断开方,在等待2MSL(TCP报文段在网络中最大的存活时间)后,如果期间没有收到其它报文,则证明对方已正常关闭,主动断开方的连接最终关闭。被动断开方在收到主动断开方的最后发送的ACK报文后,最终关闭连接。

在第四次挥手中,为什么是等待2MSL(Maximun Segment Lifetime)呢?
因为2MSL指的是一个TCP报文段在网络中最大的存活时间,2MSL对应于一次消息的来回(一个发送和一个回复)所需的最大时间。如果超过了2MSL,主动断开方都没有收到对方的报文(如FIN报文),则可以推断ACK已经被对方成功接收,此时主动断开方将最终结束自己的TCP连接。所以,TCP的TIME_WAIT状态也称为2MSL状态。
TCP/IP协议详解(二),笔记,tcp/ip,网络,网络协议

通过以上讲解的三次握手和四次挥手,一次TCP的连接和断开,至少进行7次通信,可见其成本是很高的。
**

C#中,TCP/IP建立

**
Server端

internal class TCPIPServer
    {
        private Socket serverSocket = null;
        private int serverPort = 3401;
        #region 用来专门监听等待工作的线程
        private Thread serverListenThread;
        #endregion
        public TCPIPServer()
        {
            /*
             * AddressFamily.InterNetwork:寻找地址的方式,此时选定的是IPV4地址
             * SocketType.Stream:数据传输方式,此时选择的是Stream传输,能够将数据准确的进行传输
             * ProtocolType.Tcp:执行的协议,此时选择的是TCP协议
             */
            serverSocket = new Socket(AddressFamily.InterNetwork, SocketType.Stream, ProtocolType.Tcp);
            IPAddress ipAddress = IPAddress.Any; //IPAddress.Parse(GetLocalAddressIP());
            //绑定IP地址和端口
            serverSocket.Bind(new IPEndPoint(ipAddress, serverPort));
            //设置最多15个排队连接请求
            serverSocket.Listen(15);
            serverListenThread = new Thread(ListenConnect);
            //关闭后台线程
            serverListenThread.IsBackground = true;
            serverListenThread.Start();
            Console.WriteLine("服务端监听中");
        }

        private string GetLocalAddressIP()
        {
            string localAddressIP = string.Empty;
            foreach(IPAddress ipAddress in Dns.GetHostEntry(Dns.GetHostName()).AddressList)
            {
                if(ipAddress.AddressFamily.ToString() == "InterNetwork")
                {
                    localAddressIP = ipAddress.ToString();
                }
            }
            Console.WriteLine("localAddressIP:" + localAddressIP);
            return localAddressIP;
        }

        private void ListenConnect()
        {
            while (true)
            {
                try
                {
                    Socket clientSecket = serverSocket.Accept();
                    byte[] buffer = Encoding.Default.GetBytes("服务器连接成功!");
                    clientSecket.Send(buffer);
                    string client = clientSecket.RemoteEndPoint.ToString();
                    Thread clientMsgThread = new Thread(ReceiveMessage);
                    clientMsgThread.IsBackground = true;
                    clientMsgThread.Start(clientSecket);
                }catch(Exception ex)
                {
                    serverListenThread.Interrupt();
                    Console.WriteLine(ex.Message);
                }
            }
        }

        /// <summary>
        /// 提取客户端发送的消息
        /// </summary>
        /// <param name="clientSocket"></param>
        private void ReceiveMessage(object clientSocket)
        {
            Socket client = clientSocket as Socket;
            while (true)
            {
                byte[] readBuffer = new byte[1024 * 1024 * 2];
                int len = -1;
                try
                {
                    len = client.Receive(readBuffer);
                    if(len == 0)
                    {
                        string endPointMsg = client.RemoteEndPoint.ToString();
                        Console.WriteLine(string.Format("endPointMsg: {0}", endPointMsg));
                        break;
                    }
                    else
                    {
                        string clientMsg = Encoding.Default.GetString(readBuffer, 0, len);
                        Console.WriteLine($"{DateTime.Now}【接收】{clientMsg}{Environment.NewLine}");
                    }
                }catch(Exception ex)
                {
                    string endPointMsg = client.RemoteEndPoint.ToString();
                    Console.WriteLine(string.Format("endPointMsg: {0}; Exception:{1}", endPointMsg, ex.Message));
                    break;
                }
            }
        }
    }

运行结果
TCP/IP协议详解(二),笔记,tcp/ip,网络,网络协议

Client端

internal class TCPIPClient
    {
        private Socket clientSocket = null;
        private Thread clientThread = null;

        public TCPIPClient()
        {
            clientSocket = new Socket(AddressFamily.InterNetwork, SocketType.Stream,ProtocolType.Tcp);
            IPAddress serverIPAddress = IPAddress.Parse(GetLocalAddressIP());
            clientSocket.Connect(new IPEndPoint(serverIPAddress, 3401));
            byte[] sendMsg = Encoding.Default.GetBytes("客户端发送消息啦!");
            clientSocket.Send(sendMsg);
            clientThread = new Thread(ReceiveServerMessage);
            clientThread.IsBackground = true;
            clientThread.Start();
        }

        private void ReceiveServerMessage()
        {
            while (true)
            {
                byte[] readBuffer = new byte[1024 * 1024 * 2];
                int len = -1;
                try
                {
                    len = clientSocket.Receive(readBuffer);
                    if(len > 0)
                    {
                        string serverMsg = Encoding.Default.GetString(readBuffer, 0, len);
                        Console.WriteLine($"{DateTime.Now}【接收】{serverMsg}{Environment.NewLine}");
                    }else if(len == 0)
                    {
                        clientThread.Interrupt();
                        Console.WriteLine($"Client get data len={len}");
                        break;
                    }
                }catch(Exception ex)
                {
                    Console.WriteLine(ex.Message);
                    break;
                }
            }
        }

        private string GetLocalAddressIP()
        {
            string localAddressIP = string.Empty;
            foreach (IPAddress ipAddress in Dns.GetHostEntry(Dns.GetHostName()).AddressList)
            {
                if (ipAddress.AddressFamily.ToString() == "InterNetwork")
                {
                    localAddressIP = ipAddress.ToString();
                }
            }
            Console.WriteLine("localAddressIP:" + localAddressIP);
            return localAddressIP;
        }
    }

运行结果
TCP/IP协议详解(二),笔记,tcp/ip,网络,网络协议

**

三次握手和四次挥手常见面试题

**
(1)为什么关闭连接需要四次挥手,而建立连接只需要三次握手?
因为在关闭连接时,被动断开方在收到主动断开方的FIN结束请求报文时,很有可能数据还没有发送完毕,不能立即关闭连接,被动断开方只能先回复一个ACK响应报文,告诉主动断开方“你发送的FIN报文我收到了,只有等到我所有的数据都发送完毕后,我才能真正的结束,在结束之前,我会向你发送FIN+ACK报文,你先等着”。所以,被动断开方的确认报文,需要拆成两步,故总体就需要四步。
而在建立连接场景中,Server端的应答稍微简单一些。当Server端收到Client端的SYN连接请求报文后,其ACK报文表示对请求报文的应答,SYN报文用来表示服务端的连接已经同步开启,而ACK报文和SYN报文之间,不会有其它报文需要发送,可以将这两者合二为一,可以直接发送SYN+ACK报文。所以,在建立连接时,只需要三次握手。
(2)为什么连接建立的时候是三次握手,可以改成两次握手码?
三次握手完成两个重要的功能:一是双方都做好发送数据的准备,而且双方都知道对方已经准备好了;二是双方完成初始SN序列号的协商,双方的SN序列号在握手过程中被发送和确认。
如果把三次握手改成两次握手,可能发生死锁。两次握手缺少Client端的二次ACK帧确认,假想的TCP建立连接时二次握手,可能如下图所示:
TCP/IP协议详解(二),笔记,tcp/ip,网络,网络协议

在假想的TCP建立连接两次握手过程中,Client端发送Server端的SYN请求帧,Server端收到后发送了确认应答SYN+ACK帧。按照两次握手的协定,Server端认为连接已经建立成功,可以开始发送数据帧。这个过程中,如果确认应答SYN+ACK帧在传输过程中丢失,Client端没有收到,Client端将不知道Server端是否准备好了,也不知道Server端的SN序列号,Client端认为连接未建立成功,将忽略Server端发送的任何分组数据,会一直等待Server端SYN+ACK确认应答帧。在Server端发出数据帧后,一直没有收到对应的ACK确认后就会产生超时,重复发送同样的数据帧,从而陷入死锁。
(3)为什么主动断开方在TIME-WAIT状态必须等待2MSL的时间?
因为主动断开方等待2MSL时间,是为了确保主动断开方和被动断开方都能最终关闭。假设网络是不可靠的,被动断开方发送FIN+ACK报文后,主动断开方的ACK响应报文有可能丢失,这时被动断开方处于LAST+ACK状态,由于收不到ACK确认码,被动断开方一直不能进入CLOSED状态。在这种情况下,被动断开方会超时重传FIN+ACK断开响应报文,如果主动断开方在2MSL时间内,收到这个重传的FIN+ACK报文,会重传一次ACK报文,再一次重新启动2MSL计时等待,这样就能确保被动断开方收到ACK报文,确保被动断开方顺利进入CLOSED状态。只有这样,双方都能够确保关闭。反过来,如果主动断开方在发送完ACK响应报文后,不是进入TIME_WAIT状态去等待2MSL时间,而是立即释放连接,则将无法收到被动断开方重传的FIN+ACK报文,所以不会在发送一次ACK确认报文,此时处于LAST_ACK状态的被动断开方,无法正常进入到CLOSED状态。
另一方面,防止“旧连接的已失效的数据报文”出现在新连接中,主动断开方在发送完最后一个ACK报文后,在经过2MSL,才能最终关闭和释放断开。因此,相同端口的TCP新连接,需要在2MSL时间之后,才能够正常建立连接。2MSL时间内,旧连接产生的所有数据报文,都已经从网络中消失了,从而确保了下一个新连接中不会出现旧连接报文请求。
(4)如果已经建立了连接,但是Client端突然出现故障怎么办?
TCP设有一个保活计时器,如果Client端出现故障,Server端不会一直等待,如果一直等待会造成系统资源浪费。Server端每收到一次Client端的数据帧后,Server端的保活计时器会复位。计时器的超时设置时间通常为2小时,若2小时还没有收到Client端的任何数据帧,Server端就会发送一个探测报文段,之后每隔75秒发送一次。若连续发送10个探测报文仍没有反应,Server端就认为Client出现故障,Server端会关闭连接。如果保活计时器的2小时间隔太长,可自行调整TCP连接的保活参数。文章来源地址https://www.toymoban.com/news/detail-619324.html

到了这里,关于TCP/IP协议详解(二)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • TCP/IP协议专栏——以太帧结构 详解——网络入门和工程维护必看

    以太网帧发送数据时都是从8个字节的前导码开始的。前导码是1和0的交互。 在以太网中,数据通信的基本单位是 以太网帧 ( frame ),由 头部 ( header )、数据 ( data )以及 校验和 ( checksum )三部分构成: 头部 以太网帧头部包含 3 个字段,依次是: 1、目的地址:长度是 6 字节,用

    2023年04月18日
    浏览(39)
  • 计算机网络之TCP/IP协议第二篇:OSI参考模型详解

    😉😉 学习交流群: ✅✅1:这是孙哥suns给大家的福利! ✨✨2:我们免费分享Netty、Dubbo、k8s、Mybatis、Spring...应用和源码级别的视频资料 🥭🥭3:QQ群:583783824   📚📚  工作微信:BigTreeJava 拉你进微信群,免费领取! 🍎🍎4:本文章内容出自上述:Spring应用课程!💞💞

    2024年02月09日
    浏览(48)
  • 详解TCP/IP协议第五篇:详细介绍网络传输中的地址

    😉😉 学习交流群: ✅✅1:这是孙哥suns给大家的福利! ✨✨2:我们免费分享Netty、Dubbo、k8s、Mybatis、Spring...应用和源码级别的视频资料 🥭🥭3:QQ群:583783824   📚📚  工作微信:BigTreeJava 拉你进微信群,免费领取! 🍎🍎4:本文章内容出自上述:Spring应用课程!💞💞

    2024年02月07日
    浏览(40)
  • 计算机网络笔记:计算机网络体系结构(OSI七层模型、TCP/IP五层协议)

    计算机网络是一个复杂的、具有综合性技术的系统,它由计算机系统、通信处理机、通信线路和通信设备、操作系统以及网络协议等组成。为了更好地描述计算机网络结构,使计算机网络系统有条不紊地处理工作,需要定义一种较好的网络体系结构。分层结构就是一种较好地

    2024年02月07日
    浏览(52)
  • 系分笔记计算机网络OSI七层模型概念、协议和作用以及TCP/IP协议

      计算机网路是系统分析师考试的常考知识点,本篇主要记录了知识点:OSI七层模型概念、协议和作用以及TCP/IP协议中比较重要的考点。   计算机网络的OSI七层模型从底层往上,分别是物理层、数据链路层、网络层、传输层、会话层、表示层和应用层。   计算机网络

    2024年01月16日
    浏览(52)
  • 网络编程——TCP/IP协议族(IP协议、TCP协议和UDP协议……)

    1、IP协议简介 IP协议又称 网际协议 特指为实现在一个相互连接的网络系统上从源地址到目的地传输数据包(互联网数据包)所提供必要功能的协议,是网络层中的协议。 2、特点 不可靠 :它不能保证IP数据包能成功地到达它的目的地,仅提供尽力而为的传输服务 无连接 :IP 并不

    2024年02月13日
    浏览(66)
  • 【网络协议】TCP/IP 协议

    1、TCP/IP 模型 TCP/IP 协议模型,包含了一系列构成互联网基础的网络协议,是 Internet 的核心协议。 基于 TCP/IP 协议栈可分为四层或五层,转换为 OSI 参考模型,可以分为七层,分别如下图所示: 通常我们所说的都是基于 TCP/TP 五层模型。 2、TCP/IP 协议栈每一层功能 应用层:H

    2024年02月12日
    浏览(58)
  • IP协议【图解TCP/IP(笔记九)】

    TCP/IP的心脏是互联网层。这一层主要由IP(Internet Protocol)和ICMP(Internet Control Message Protocol)两个协议组成。 IP相当于OSI参考模型的第3层 IP(IPv4、IPv6)相当于OSI参考模型中的第3层——网络层。 网络层的主要作用是“实现终端节点之间的通信”。这种终端节点之间的通信也叫

    2024年02月13日
    浏览(48)
  • TCP/IP 协议详解

    TCP/IP传输协议,即传输控制/网络协议,也叫作网络通讯协议。它是在网络的使用中的最基本的通信协议。 TCP/IP传输协议对互联网中各部分进行通信的标准和方法进行了规定。并且,TCP/IP传输协议是保证网络数据信息及时、完整传输的两个重要的协议。 TCP/IP传输协议是严格来

    2024年02月11日
    浏览(37)
  • TCP/IP协议详解

    TCP/IP 是 TCP 和 IP 两种协议群的统称,具体来说,IP 或 ICMP、TCP 或 UDP、TELNET 或 FTP、以及 HTTP 等都属于 TCP/IP 协议 计算机网络体系结构分层 计算机网络体系结构分层 不难看出,TCP/IP 与 OSI 在分层模块上稍有区别。OSI 参考模型注重“通信协议必要的功能是什么”,而 TCP/IP 则更

    2024年02月03日
    浏览(36)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包