信号量Semaphore详解

这篇具有很好参考价值的文章主要介绍了信号量Semaphore详解。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

前言

大家应该都用过synchronized 关键字加锁,用来保证某个时刻只允许一个线程运行。那么如果控制某个时刻允许指定数量的线程执行,有什么好的办法呢? 答案就是JUC提供的信号量Semaphore

介绍和使用

  • Semaphore(信号量)可以用来限制能同时访问共享资源的线程上限,它内部维护了一个许可的变量,也就是线程许可的数量
  • Semaphore的许可数量如果小于0个,就会阻塞获取,直到有线程释放许可
  • Semaphore是一个非重入锁

API介绍

  1. 构造方法
  • public Semaphore(int permits)permits 表示许可线程的数量
  • public Semaphore(int permits, boolean fair)fair 表示公平性,如果设为 true,表示是公平,那么等待最久的线程先执行
  1. 常用API
  • public void acquire():表示一个线程获取1个许可,那么线程许可数量相应减少一个
  • public void release():表示释放1个许可,那么线程许可数量相应会增加
  1. 其他API
  • void acquire(int permits):表示一个线程获取n个许可,这个数量由参数permits决定
  • void release(int permits):表示一个线程释放n个许可,这个数量由参数permits决定
  • int availablePermits():返回当前信号量线程许可数量
  • int getQueueLength(): 返回等待获取许可的线程数的预估值

基本使用

public static void main(String[] args) {
        // 1. 创建 semaphore 对象
        Semaphore semaphore = new Semaphore(2);
        // 2. 10个线程同时运行
        for (int i = 0; i < 8; i++) {
            new Thread(() -> {
                // 3. 获取许可
                try {
                    semaphore.acquire();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                try {
                    log.debug("running...");
                    sleep(1);
                    log.debug("end...");
                } catch (InterruptedException e) {
                    e.printStackTrace();
                } finally {
                    // 4. 释放许可
                    semaphore.release();
                }
            }).start();
        }
    }
复制代码

运行结果:

semaphore,java,java,算法,c++

原理介绍

semaphore,java,java,算法,c++

上面是Semaphore的类结构图,其中FairSyncNonfairSync是它的内部类,他们共同继承了AQS类,AQS的共享模式提供了Semaphore的加锁、解锁。

为了更好的搞懂原理,我们通过一个例子来帮助我们理解。

假设Semaphorepermits为 3,这时 5 个线程来获取资源,其中Thread-1Thread-2Thread-4CAS 竞争成功,permits 变为 0,而 Thread-0 Thread-3 竞争失败。

semaphore,java,java,算法,c++

获取许可acquire()

  • acquire()主方法会调用 sync.acquireSharedInterruptibly(1)方法
  • acquireSharedInterruptibly()方法会先调用tryAcquireShared()方法返回许可的数量,如果小于0个,调用doAcquireSharedInterruptibly()方法进入阻塞
// acquire() -> sync.acquireSharedInterruptibly(1),可中断
public final void acquireSharedInterruptibly(int arg) {
    if (Thread.interrupted())
        throw new InterruptedException();
    // 尝试获取通行证,获取成功返回 >= 0的值
    if (tryAcquireShared(arg) < 0)
        // 获取许可证失败,进入阻塞
        doAcquireSharedInterruptibly(arg);
}
复制代码
  • tryAcquireShared()方法在终会调用到Sync#nonfairTryAcquireShared()方法
  • nonfairTryAcquireShared()方法中会减去获取的许可数量,返回剩余的许可数量
// tryAcquireShared() -> nonfairTryAcquireShared()
// 非公平,公平锁会在循环内 hasQueuedPredecessors()方法判断阻塞队列是否有临头节点(第二个节点)
final int nonfairTryAcquireShared(int acquires) {
    for (;;) {
        // 获取 state ,state 这里【表示通行证】
        int available = getState();
        // 计算当前线程获取通行证完成之后,通行证还剩余数量
        int remaining = available - acquires;
        // 如果许可已经用完, 返回负数, 表示获取失败,
        if (remaining < 0 ||
            // 许可证足够分配的,如果 cas 重试成功, 返回正数, 表示获取成功
            compareAndSetState(available, remaining))
            return remaining;
    }
}
复制代码
  • 如果剩余的许可数量<0, 会调用doAcquireSharedInterruptibly()方法将当前线程加入到阻塞队列中阻塞
  • 方法中调用parkAndCheckInterrupt()阻塞当前线程
private void doAcquireSharedInterruptibly(int arg) {
    // 将调用 Semaphore.aquire 方法的线程,包装成 node 加入到 AQS 的阻塞队列中
    final Node node = addWaiter(Node.SHARED);
    // 获取标记
    boolean failed = true;
    try {
        for (;;) {
            final Node p = node.predecessor();
            // 前驱节点是头节点可以再次获取许可
            if (p == head) {
                // 再次尝试获取许可,【返回剩余的许可证数量】
                int r = tryAcquireShared(arg);
                if (r >= 0) {
                    // 成功后本线程出队(AQS), 所在 Node设置为 head
                    // r 表示【可用资源数】, 为 0 则不会继续传播
                    setHeadAndPropagate(node, r); 
                    p.next = null; // help GC
                    failed = false;
                    return;
                }
            }
            // 不成功, 设置上一个节点 waitStatus = Node.SIGNAL, 下轮进入 park 阻塞
            if (shouldParkAfterFailedAcquire(p, node) && parkAndCheckInterrupt())
                throw new InterruptedException();
        }
    } finally {
        // 被打断后进入该逻辑
        if (failed)
            cancelAcquire(node);
    }
}
复制代码

最终的AQS状态如下图所示:

  • Thread-1Thread-2Thread-4正常运行

  • AQS的state也就是等于0

  • Thread-0Thread-3再阻塞队列中

semaphore,java,java,算法,c++

释放许可release()

现在Thread-4运行完毕,要释放许可,Thread-0Thread-3又是如何恢复执行的呢?

  • 调用release()方法释放许可,最终调用 Sync#releaseShared()方法
  • 如果方法tryReleaseShared(arg)尝试释放许可成功,那么调用doReleaseShared();进行唤醒
// release() -> releaseShared()
public final boolean releaseShared(int arg) {
    // 尝试释放锁
    if (tryReleaseShared(arg)) {
        doReleaseShared();
        return true;
    }    
    return false;
}
复制代码
  • tryReleaseShared()方法主要是尝试释放许可
  • 获取当前许可数量 + 释放的数量,然后通过cas设置回去
protected final boolean tryReleaseShared(int releases) {    
    for (;;) {
        // 获取当前锁资源的可用许可证数量
        int current = getState();
        int next = current + releases;
        // 索引越界判断
        if (next < current)            
            throw new Error("Maximum permit count exceeded");        
        // 释放锁
        if (compareAndSetState(current, next))            
            return true;    
    }
}
复制代码
  • 调用doReleaseShared()方法唤醒队列中的线程
  • 其中unparkSuccessor()方法是唤醒的核心操作
// 唤醒
private void doReleaseShared() {
    // 如果 head.waitStatus == Node.SIGNAL ==> 0 成功, 下一个节点 unpark	
    // 如果 head.waitStatus == 0 ==> Node.PROPAGATE    
    for (;;) {
        Node h = head;
        if (h != null && h != tail) {
            int ws = h.waitStatus;
            if (ws == Node.SIGNAL) {
                // 防止 unparkSuccessor 被多次执行
                if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
                    continue;
                // 唤醒后继节点
                unparkSuccessor(h);
            }
            // 如果已经是 0 了,改为 -3,用来解决传播性
            else if (ws == 0 && !compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
                continue;
        }
        if (h == head)
            break;
    }
}
复制代码

最终AQS状态如下图所示:

semaphore,java,java,算法,c++

  • 许可state变回1
  • 然后Thread-0开始竞争,如果竞争成功,如下图所示:

semaphore,java,java,算法,c++

  • 由于Thread-0竞争成功,再次获取到许可,许可数量减1,最终又变回0
  • 然后等待队列中剩余Thread-3

总结

Semaphore信号量类基于AQS的共享锁实现,有公平锁和非公平锁两个版本,它用来限制能同时访问共享资源的线程上限,典型的应用场景是可以用来保护有限的公共资源,比如数据库连接等。文章来源地址https://www.toymoban.com/news/detail-619807.html

到了这里,关于信号量Semaphore详解的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【Linux从入门到精通】信号量(信号量的原理与相关操作接口)详解

      本篇文章重点对 信号量的概念,信号量的申请、初始化、释放、销毁等操作进行讲解。同时举例把信号量应用到生产者消费者模型来理解 。希望本篇文章会对你有所帮助。 目录 一、信号量概念 1、1 什么是信号量 1、2 为什么要有信号量 1、3 信号量的PV操作 二、信号量的相

    2024年02月08日
    浏览(47)
  • 『Linux』第九讲:Linux多线程详解(五)_ 信号量

    「前言」文章是关于Linux多线程方面的知识,上一篇是 Linux多线程详解(四),今天这篇是 Linux多线程详解(五),内容大致是信号量,讲解下面开始! 「归属专栏」Linux系统编程 「主页链接」个人主页 「笔者」枫叶先生(fy) 「枫叶先生有点文青病」「每篇一句」 求其上,

    2024年02月07日
    浏览(48)
  • 【Linux】详解进程通信中信号量的本质&&同步和互斥的概念&&临界资源和临界区的概念

             访问资源在安全的前提下,具有一定的顺序性,就叫做同步 。在多道程序系统中,由于资源有限,进程或线程之间可能产生冲突。同步机制就是为了解决这些冲突,保证进程或线程之间能够按照既定的顺序访问共享资源。同步机制有助于避免竞态条件和死锁(

    2024年04月25日
    浏览(38)
  • java进行系统的限流实现--Guava RateLimiter、简单计数、滑窗计数、信号量、令牌桶

    本文主要介绍了几种限流方法:Guava RateLimiter、简单计数、滑窗计数、信号量、令牌桶,漏桶算法和nginx限流等等 1、引入guava集成的工具 pom.xml 文件 demo代码实现 2.令牌桶算法 3、滑窗计数器 4、信号量

    2024年02月09日
    浏览(38)
  • 【Linux C | 多线程编程】线程同步 | 信号量(无名信号量) 及其使用例子

    😁博客主页😁:🚀https://blog.csdn.net/wkd_007🚀 🤑博客内容🤑:🍭嵌入式开发、Linux、C语言、C++、数据结构、音视频🍭 🤣本文内容🤣:🍭介绍 🍭 😎金句分享😎:🍭你不能选择最好的,但最好的会来选择你——泰戈尔🍭 ⏰发布时间⏰: 本文未经允许,不得转发!!!

    2024年04月26日
    浏览(37)
  • uCOSii信号量

    uCOSii 信号量 主要用来测试使用uCOSii“创建信号量,发送信号量,接收信号量,删除信号量”。 学习uCOSii一定要先了解os_cfg.h文件。 信号量管理函数如下: OSSemAccept () 无条件地等待请求一个信号量函数,中断服务子程序只能用OSSemAccept()而不能用OSSemPend(),因为中断服务子程序是不

    2024年02月07日
    浏览(55)
  • 信号量

    信号量(semaphore)和信号只有一字之差,却是不同的概念, 信号量与之前介绍的IPC不同,它是一个计数器,用于实现进程间的互斥于同步 本文参考: Linux 的信号量_linux 信号量_行孤、的博客-CSDN博客 【Linux】Linux的信号量集_Yngz_Miao的博客-CSDN博客 Linux进程间通信(九)——信

    2024年02月12日
    浏览(49)
  • linux(信号量)

    1.回顾信号量的概念 2.认识信号量对应的操作函数 3.认识一个环形队列 4.结合sem+环形队列写生产者消费者模型 --------------------------------------------------------------------------------------------------------------------------------- 1.回顾信号量的概念  每个人想进放映厅看电影,第一件事就是买票

    2024年02月11日
    浏览(41)
  • linux信号量

    通过学习linux的信号量,对linux的信号量进行了编程。

    2024年02月10日
    浏览(41)
  • 并发编程 --- 信号量线程同步

    上文编码技巧 --- 同步锁对象的选定中,提到了在C#中,让线程同步有两种方式: 锁(lock、Monitor等) 信号量(EventWaitHandle、Semaphore、Mutex) 加锁是最常用的线程同步的方法,就不再讨论,本篇主要讨论使用信号量同步线程。 实际上,再C#中 EventWaitHandle 、 Semaphore 、 Mutex 都是

    2024年02月16日
    浏览(41)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包