目录
一、建立HPS硬件系统模型
1.1 GHRD
1.2 从0开始搭建HPS
1.2.1 FPGA Interfaces
1.2.1.1 General
1.2.1.2 AXI Bridge
1.2.1.3 FPGA-to-HPS SDRAM Interface
1.2.1.4 DMA Peripheral Request
1.2.1.5 Interrupts
1.2.1.6 EMAC ptp interface
1.2.2 Peripheral Pin Multiplexing
1.2.3 HPS Clocks
1.2.3.1 Input Clocks
1.2.3.2 Output Clocks
1.2.4 SDRAM
1.2.4.1 PHY Settings
1.2.4.2 Memory Parameters
1.2.4.3 Memory Timing
1.2.4.4 Board Settings
1.3 添加其他组件
1.4 产生Qsys系统及通信问题
1.5 编译Quartus工程
1.6 硬件系统外设的输入/输出测试
1.7 相关代码
一、建立HPS硬件系统模型
建立HPS硬件模型有两种方式,一种是在GHRD中添加或修改,另外一种是从0开始搭建HPS
1.1 GHRD
GSRD(Golden System Reference Design, 黄金系统参考设计)包含:
- GHRD(Golden Hardware Reference Design, 黄金硬件参考设计)
- 基于U-Boot的Bootloader参考
- Linux BSP参考
- Linux应用程序示例
其中GHRD包含 Cyclone V SoC / Arria V SoC Development Kit的完整HPS设计,如双核ARM Cortex-A9 MPCore HPS、用户按键输入(PIO Buttion)、用户拨码开关输入(PIO DIPSW)、LED输出(PIO LED)、64KB片上存储器、JTAG-to-Avalon主接口连接桥(JTAG Master)、JATG-UART调试模块、中断捕获器(Interrupt Capturer)及系统ID(SysID)等。使用时只需在其中添加或修改所需的内容即可。
1.2 从0开始搭建HPS
在Quartus中创建工程HPS_Qsys_Prj,进入Platform Designer,添加Hard Processor System组件
1.2.1 FPGA Interfaces
在FPGA Interfaces标签设置页有General、AXI Bridges、FPGA-to-HPS SDRAM Interface、Resets、DMA Peripheral Request、Interrupts、EMAC ptp Interface
1.2.1.1 General
当General中某些选项被选中,相应的接口会出现在HPS模块中
参数名 | 描述 |
Enable MPU standby and event signals | 通知FPGA接口微处理器单元(MPU)处于待机模式; 可以从等待事件(WFE)状态唤醒一个MPCore处理器 |
Enable general purpose signals | 在SOC器件的HPS部分,启用FPGA与FPGA管理器之间的一组32位的单向普通目的接口 |
Enable Debug APB interface | 启用对FPGA的调试接口,允许在HPS中访问调试组件 |
Enable System Trace Macrocell hardware events | 启用系统跟踪单元(STM)硬件事件,允许FPGA中的逻辑向跟踪过程插入信息 |
Enable FPGA Cross Trigger Interface | 启用交叉触发器接口(CTI),允许出发Source/Sink与出发的交叉触发(ECT)相连 |
Enable FPGA Trace Port Interface Unit | 启用跟踪端口接口单元(TPIU)与FPGA逻辑之间的一个接口。TPIU是片上跟踪源与某个跟踪端口之间的桥梁 |
Enable FPGA Trace Port Alternate FPGA Interface | 当启用跟踪端口时,会创建一个与Arria 10跟踪接口兼容的接口 |
Enable boot from fpga signals | 启用HPS的一个输入信号,表明是否片上RAM中的preloader可以使用 |
Enable HLGPI Interface | 启用HPS的GPIO |
1.2.1.2 AXI Bridge
FPGA-to-HPS interface width和HPS-to-FPGA interface width可选Unused、32-bit、64-bit和128-bit,即FPGA2HPS接口位宽和HPS2FPGA接口位宽。
Lightweight HPS-to-FPGA interface width可选32-bit、Unused,即轻量级LWHPS2FPGA接口位宽。
1.2.1.3 FPGA-to-HPS SDRAM Interface
可以通过添加一个或多个SDRAM从端口(最多6个)让FPGA来访问HPS SDRAM子系统,其数据宽度可选32、64、128或256位,接口类型可选AXI-3、双向Avalon-MM、只写Avalon-MM、只读Avalon-MM。
1.2.1.4 Resets
参数名 | 参数描述 |
Enable HPS-to-FPGA cold reset output | 启用HPS2FPGA接口得冷启动输出 |
Enable HPS warm reset handshake signals | 启用一组附加的复位握手信号,允许软件通知HPS在其安全时开启一个FPGA结构中的热复位信号 |
Enable FPGA-to-HPS debug reset request | 启用FPGA2HPS调试复位请求接口 |
Enable FPGA-to-HPS warm reset request | 启用FPGA2HPS热复位请求接口 |
Enable FPGA-to-HPS cold reset request | 启用FPGA2HPS冷复位请求接口 |
1.2.1.4 DMA Peripheral Request
单独启用每个DMA控制器外设请求ID(Peripheral Request ID),每个请求ID可以使能连接FPGA的8个逻辑DMA通道中对应的通道接口。外设请求ID[4-7]是与CAN控制器共用。
1.2.1.5 Interrupts
对不同中断使能,勾选Enable FPGA-to-HPS Interrupts则启用HPS中FPGA对MPU的中断信号,下方则是HPS中的每个外设提供给FPGA的中断信号
1.2.1.6 EMAC ptp interface
Enable EMAC Precision Time Protocol(PTP) FPGA Interface,启用EMACO精确时间协议 (PTP) FPGA接口,当EMAC通过Pinmux连接到HPS I/O时,可通过FPGA访问IEEE 1588精密时间协议(PTP)接口。当EMAC连接到FPGA时,PTP信号可用。
1.2.2 Peripheral Pin Multiplexing
Peripheral Pin Multiplexing标签页包含了HPS所有可用外设的参数设置,通过选择HPS I/O设置可用启用对应的外设。当启用某个外设时,还需要设置其相应的工作模式。将鼠标放到相应的外设模式(mode)设置选项位置几秒时间,即可出现一个下拉列表,下拉列表给出了外设工作模式下的引脚定义。引脚复用设置应该与所用SOC FPGA开发板上的实际外设连接相匹配。
在最下方的Peripherals Mux Table中列出了HPS外设的引脚分配情况,包括没有分配给任何外设的引脚,可以将其作为普通目的I/O(GPIO)使用,点击相对应的后面的GPIO即可。
1.2.3 HPS Clocks
HPS Clocks包括Input Clocks和Output Clocks
注意:这里设置的时钟频率是指期望的最高频率,实际时钟频率可以通过MPU上的软件对寄存器的设置进行修改,这里设置的时钟频率将出现在Qsys产生的Synopsys设计约束文件(.sdc)中。
1.2.3.1 Input Clocks
External Clock Sources用于设置E0SC的时钟频率
FPGA-to-HPS PLL Reference Clocks用于启用HPS SDRAM PLL提供参考时钟的FPGA接口、启用HPS外设PLL提供参考时钟的FPGA接口
Peripheral FPGA Clocks用于设置HPS外设的时钟频率,但需要先设置HPS外设在FPGA可以(即相应外设的引脚复用选择FPGA)
1.2.3.2 Output Clocks
Clock Sources设置时钟源
Main PLL Output Clocks - Desired Frequencies主锁相环输出时钟-所需频率
Peripheral PLL Output Clocks - Desired frequencies外围锁相环输出时钟-所需频率
HPS-to-FPGA User Clocks,用户时钟
参数名称 | 参数描述 |
Enable HPS-to-FPGA user 0 clock | 启用HPS到FPGA的主PLL |
Enable HPS-to-FPGA user 1 clock | 启用HPS到FPGA的外设PLL |
Enable HPS-to-FPGA user 2 clock | 启用HPS到FPGA的SDRAM PLL |
1.2.4 SDRAM
HPS支持DDR2、DDR3、LPDDR2协议的存储器接口
1.2.4.1 PHY Settings
Memory clock frequency设置存储器芯片的时钟频率,依据DDR3芯片手册设置
Supply Voltage电源电压,依据DDR3芯片手册选择
1.2.4.2 Memory Parameters
根据DDR3芯片手册中的参数设置Memory Parameters
1.2.4.3 Memory Timing
根据DDR3芯片手册中的相关参数验证Memory Timing页面中的时序参数
1.2.4.4 Board Settings
Setup and Hold Derating和Intersymbol Interference均可以选择Use Altera's default settings,也可以根据芯片手册中的相关参数进行设置
需要根据开发板参数设置Board Skews,SDRAM利用这些参数校准I/O延时以及FIFO设置来补偿板级、FPGA部分或存储器件的漂移时间
所有设置完成后点击右下角finish,将h2f_reset引出,将三个clock连接clk
1.3 添加其他组件
添加On-chip Memory、两个JTAG to Avalon Master Bridge、System ID Peripheral、JTAG UART、LED PIO、拨码开关PIO、按键PIO、自定义中断捕获模块
自定义中断捕获模块
module intr_capturer #(
parameter NUM_INTR = 32
// active high level interrupt is expected for the input of this capturer module
)(
input clk,
input rst_n,
input [NUM_INTR-1:0] interrupt_in,
//input [31:0] wrdata,
input addr,
input read,
output [31:0] rddata
);
reg [NUM_INTR-1:0] interrupt_reg;
reg [31:0] readdata_with_waitstate;
wire [31:0] act_readdata;
wire [31:0] readdata_lower_intr;
wire [31:0] readdata_higher_intr;
wire access_lower_32;
wire access_higher_32;
always @(posedge clk or negedge rst_n) begin
if (!rst_n) interrupt_reg <= 'b0;
else interrupt_reg <= interrupt_in;
end
generate
if (NUM_INTR>32) begin : two_intr_reg_needed
assign access_higher_32 = read & (addr == 1);
assign readdata_lower_intr = interrupt_reg[31:0] & {(32){access_lower_32}};
assign readdata_higher_intr = interrupt_reg[NUM_INTR-1:32] & {(NUM_INTR-32){access_higher_32}};
end
else begin : only_1_reg
assign readdata_lower_intr = interrupt_reg & {(NUM_INTR){access_lower_32}};
assign readdata_higher_intr = {32{1'b0}};
end
endgenerate
assign access_lower_32 = read & (addr == 0);
assign act_readdata = readdata_lower_intr | readdata_higher_intr;
assign rddata = readdata_with_waitstate;
always @(posedge clk or negedge rst_n) begin
if (!rst_n) readdata_with_waitstate <= 32'b0;
else readdata_with_waitstate <= act_readdata;
end
endmodule
1.4 产生Qsys系统及通信问题
连线、设置中断、手动分配相应外设的基地址
产生Qsys系统
Qsys将产生指定格式的硬件描述语言(HDL)文件用于Quartus工程编译,同时产生一组与硬件系统定义相关的文件,包括定义了选定的HPS外设默认引脚分配的Tcl(Tool Command Language)文件,定义了HPS与FPGA中多端口存储器控制器的Tcl文件,定义了系统所用IP和用于TimeQuest时序约束的QIP文件,可以在synthesis目录找到。
HPS 针对和FPGA 的互联通信,总共提供了 3 种形式的 AXI 总线,分别为用于 FPGA 主动向HPS 发起高效数据传输操作的 F2H AXI Slave 总线,用于 HPS 主动向 FPGA发起高效数据传输操作的 H2F AXI Master 总线,以及用于 HPS 主动向 FPGA发起一些控制或小容量数据传输操作的 H2F LW AXI Master 总线。H2F 和 F2H两个高速桥,每个桥最高支持 128-bit 位宽。
在含有HPS 的SOC系统中,由于 HPS 中的ARM Cortex-A9使用的是AXI总线协议,其提供的与FPGA通信总线也是AXI总线,AXI 总线和 Avalon MemoryMapped总线在信号类型和时序上都有一定的差别,无法直接连接。
为了支持 Platform Designer 中提供的所有使用 Avalon Memory Mapped 总线的 IP 能够方便的连接到HPS 上,Platform Designer具有 Avalon 和 AXI 总线间的自动转换功能,只需要将 Avalon Memory Mapped 总线信号连接到 AXI信号总线上即可。至于如何完成两者间的信号功能和时序的转换,Platform Designer 会自动生成相应的转换逻辑。这对于一些已经使用NIOS II CPU 开发了相应的系统和自定义 IP,可以直接在 HPS 中按照原本 IOS I中的系统架构添加 IP 连接好总线就能实现相同的功能,同时,对于用户自己开发的自定义 IP,无需做任何修改就能直接用于 SOC 系统中,大大降低了系统移植的工作量。
1.5 编译Quartus工程
在Quartus的工程中添加soc_system.qip和soc_system.v文件
点击工具栏中的File->New->Block Diagram/Schematic File,新建一个原理图文件
再右键点击原理图空白处选择Insert->Symbol,将soc_system添加入原理图文件中,右键点击soc_system->Generate Pins for Symbol Ports,为元件添加输入/输出端口
将两处hps_0_h2f_reset的输出(命名为hps_fpga_reset_n)连接到系统的复位reset信号上,然后保存
添加顶层文件
module HPS_Qsys_prj(
///
HPS Interface
// input wire reset_reset_n, // reset.reset_n
// input wire clk_clk, // clk.clk
output wire [14:0] memory_mem_a, // memory.mem_a
output wire [2:0] memory_mem_ba, // .mem_ba
output wire memory_mem_ck, // .mem_ck
output wire memory_mem_ck_n, // .mem_ck_n
output wire memory_mem_cke, // .mem_cke
output wire memory_mem_cs_n, // .mem_cs_n
output wire memory_mem_ras_n, // .mem_ras_n
output wire memory_mem_cas_n, // .mem_cas_n
output wire memory_mem_we_n, // .mem_we_n
output wire memory_mem_reset_n, // .mem_reset_n
inout wire [31:0] memory_mem_dq, // .mem_dq
inout wire [3:0] memory_mem_dqs, // .mem_dqs
inout wire [3:0] memory_mem_dqs_n, // .mem_dqs_n
output wire memory_mem_odt, // .mem_odt
output wire [3:0] memory_mem_dm, // .mem_dm
input wire memory_oct_rzqin, // .oct_rzqin
output wire hps_0_hps_io_hps_io_emac1_inst_TX_CLK, // hps_0_hps_io.hps_io_emac1_inst_TX_CLK
output wire hps_0_hps_io_hps_io_emac1_inst_TXD0, // .hps_io_emac1_inst_TXD0
output wire hps_0_hps_io_hps_io_emac1_inst_TXD1, // .hps_io_emac1_inst_TXD1
output wire hps_0_hps_io_hps_io_emac1_inst_TXD2, // .hps_io_emac1_inst_TXD2
output wire hps_0_hps_io_hps_io_emac1_inst_TXD3, // .hps_io_emac1_inst_TXD3
input wire hps_0_hps_io_hps_io_emac1_inst_RXD0, // .hps_io_emac1_inst_RXD0
inout wire hps_0_hps_io_hps_io_emac1_inst_MDIO, // .hps_io_emac1_inst_MDIO
output wire hps_0_hps_io_hps_io_emac1_inst_MDC, // .hps_io_emac1_inst_MDC
input wire hps_0_hps_io_hps_io_emac1_inst_RX_CTL, // .hps_io_emac1_inst_RX_CTL
output wire hps_0_hps_io_hps_io_emac1_inst_TX_CTL, // .hps_io_emac1_inst_TX_CTL
input wire hps_0_hps_io_hps_io_emac1_inst_RX_CLK, // .hps_io_emac1_inst_RX_CLK
input wire hps_0_hps_io_hps_io_emac1_inst_RXD1, // .hps_io_emac1_inst_RXD1
input wire hps_0_hps_io_hps_io_emac1_inst_RXD2, // .hps_io_emac1_inst_RXD2
input wire hps_0_hps_io_hps_io_emac1_inst_RXD3, // .hps_io_emac1_inst_RXD3
inout wire hps_0_hps_io_hps_io_qspi_inst_IO0, // .hps_io_qspi_inst_IO0
inout wire hps_0_hps_io_hps_io_qspi_inst_IO1, // .hps_io_qspi_inst_IO1
inout wire hps_0_hps_io_hps_io_qspi_inst_IO2, // .hps_io_qspi_inst_IO2
inout wire hps_0_hps_io_hps_io_qspi_inst_IO3, // .hps_io_qspi_inst_IO3
output wire hps_0_hps_io_hps_io_qspi_inst_SS0, // .hps_io_qspi_inst_SS0
output wire hps_0_hps_io_hps_io_qspi_inst_CLK, // .hps_io_qspi_inst_CLK
inout wire hps_0_hps_io_hps_io_sdio_inst_CMD, // .hps_io_sdio_inst_CMD
inout wire hps_0_hps_io_hps_io_sdio_inst_D0, // .hps_io_sdio_inst_D0
inout wire hps_0_hps_io_hps_io_sdio_inst_D1, // .hps_io_sdio_inst_D1
output wire hps_0_hps_io_hps_io_sdio_inst_CLK, // .hps_io_sdio_inst_CLK
inout wire hps_0_hps_io_hps_io_sdio_inst_D2, // .hps_io_sdio_inst_D2
inout wire hps_0_hps_io_hps_io_sdio_inst_D3, // .hps_io_sdio_inst_D3
inout wire hps_0_hps_io_hps_io_usb1_inst_D0, // .hps_io_usb1_inst_D0
inout wire hps_0_hps_io_hps_io_usb1_inst_D1, // .hps_io_usb1_inst_D1
inout wire hps_0_hps_io_hps_io_usb1_inst_D2, // .hps_io_usb1_inst_D2
inout wire hps_0_hps_io_hps_io_usb1_inst_D3, // .hps_io_usb1_inst_D3
inout wire hps_0_hps_io_hps_io_usb1_inst_D4, // .hps_io_usb1_inst_D4
inout wire hps_0_hps_io_hps_io_usb1_inst_D5, // .hps_io_usb1_inst_D5
inout wire hps_0_hps_io_hps_io_usb1_inst_D6, // .hps_io_usb1_inst_D6
inout wire hps_0_hps_io_hps_io_usb1_inst_D7, // .hps_io_usb1_inst_D7
input wire hps_0_hps_io_hps_io_usb1_inst_CLK, // .hps_io_usb1_inst_CLK
output wire hps_0_hps_io_hps_io_usb1_inst_STP, // .hps_io_usb1_inst_STP
input wire hps_0_hps_io_hps_io_usb1_inst_DIR, // .hps_io_usb1_inst_DIR
input wire hps_0_hps_io_hps_io_usb1_inst_NXT, // .hps_io_usb1_inst_NXT
output wire hps_0_hps_io_hps_io_spim0_inst_CLK, // .hps_io_spim0_inst_CLK
output wire hps_0_hps_io_hps_io_spim0_inst_MOSI, // .hps_io_spim0_inst_MOSI
input wire hps_0_hps_io_hps_io_spim0_inst_MISO, // .hps_io_spim0_inst_MISO
output wire hps_0_hps_io_hps_io_spim0_inst_SS0, // .hps_io_spim0_inst_SS0
output wire hps_0_hps_io_hps_io_spim1_inst_CLK, // .hps_io_spim1_inst_CLK
output wire hps_0_hps_io_hps_io_spim1_inst_MOSI, // .hps_io_spim1_inst_MOSI
input wire hps_0_hps_io_hps_io_spim1_inst_MISO, // .hps_io_spim1_inst_MISO
output wire hps_0_hps_io_hps_io_spim1_inst_SS0, // .hps_io_spim1_inst_SS0
input wire hps_0_hps_io_hps_io_uart0_inst_RX, // .hps_io_uart0_inst_RX
output wire hps_0_hps_io_hps_io_uart0_inst_TX, // .hps_io_uart0_inst_TX
inout wire hps_0_hps_io_hps_io_i2c1_inst_SDA, // .hps_io_i2c1_inst_SDA
inout wire hps_0_hps_io_hps_io_i2c1_inst_SCL, // .hps_io_i2c1_inst_SCL
inout wire hps_0_hps_io_hps_io_gpio_inst_GPIO0, // .hps_io_gpio_inst_GPIO0
inout wire hps_0_hps_io_hps_io_gpio_inst_HLGPI1,
inout wire hps_0_hps_io_hps_io_gpio_inst_HLGPI2,
inout wire hps_0_hps_io_hps_io_gpio_inst_HLGPI3,
inout wire hps_0_hps_io_hps_io_gpio_inst_HLGPI4,
inout wire hps_0_hps_io_hps_io_gpio_inst_HLGPI5,
inout wire hps_0_hps_io_hps_io_gpio_inst_HLGPI6,
inout wire hps_0_hps_io_hps_io_gpio_inst_HLGPI7,
inout wire hps_0_hps_io_hps_io_gpio_inst_HLGPI8,
inout wire hps_0_hps_io_hps_io_gpio_inst_HLGPI9,
inout wire hps_0_hps_io_hps_io_gpio_inst_HLGPI10,
inout wire hps_0_hps_io_hps_io_gpio_inst_HLGPI11,
inout wire hps_0_hps_io_hps_io_gpio_inst_HLGPI12,
inout wire hps_0_hps_io_hps_io_gpio_inst_HLGPI13,
inout wire hps_0_hps_io_hps_io_gpio_inst_GPIO09, // .hps_io_gpio_inst_GPIO09
inout wire hps_0_hps_io_hps_io_gpio_inst_GPIO35, // .hps_io_gpio_inst_GPIO35
inout wire hps_0_hps_io_hps_io_gpio_inst_GPIO48, // .hps_io_gpio_inst_GPIO48
inout wire hps_0_hps_io_hps_io_gpio_inst_GPIO53, // .hps_io_gpio_inst_GPIO53
inout wire hps_0_hps_io_hps_io_gpio_inst_GPIO54, // .hps_io_gpio_inst_GPIO54
inout wire hps_0_hps_io_hps_io_gpio_inst_GPIO55, // .hps_io_gpio_inst_GPIO55
inout wire hps_0_hps_io_hps_io_gpio_inst_GPIO56, // .hps_io_gpio_inst_GPIO56
inout wire hps_0_hps_io_hps_io_gpio_inst_GPIO61, // .hps_io_gpio_inst_GPIO61
inout wire hps_0_hps_io_hps_io_gpio_inst_GPIO62, // .hps_io_gpio_inst_GPIO62
FPGA Interface
//FPGA-GPLL-CLK------------------------//X pins
input clk_100m_fpga, //2.5V //100 MHz (2nd copy to max)
input clk_50m_fpga, //2.5V //50MHz (2nd copy to max)
input clk_top1, //2.5V //156.25 MHz adjustable
input clk_bot1, //1.5V //100 MHz ajustable
input fpga_resetn, //2.5V //FPGA Reset Pushbutton
SiLabs Clock Generator I/F ///
output wire clk_i2c_sclk, // I2C Clock
inout wire clk_i2c_sdat, // I2C Data
`ifdef user_peripheral
//FPGA-User-IO-------------------------//14 pins //--------------------------
input [3:0] user_dipsw_fpga, //
output [3:0] user_led_fpga, //
input [3:0] user_pb_fpga, //
input wire irda_rxd, // IRDA Receive LED
output wire fan_ctrl // control for fan
`endif
`ifdef ddr3
//FPGA-DDR3-400Mx32--------------------//74 pins //--------------------------
output [14:0] ddr3_fpga_a, //SSTL15 //Address
output [2:0] ddr3_fpga_ba, //SSTL15 //Bank Address
output ddr3_fpga_casn, //SSTL15 //Column Address Strobe
output ddr3_fpga_cke, //SSTL15 //Clock Enable
output ddr3_fpga_clk_n, //SSTL15 //Diff Clock - Neg
output ddr3_fpga_clk_p, //SSTL15 //Diff Clock - Pos
output ddr3_fpga_csn, //SSTL15 //Chip Select
output [3:0] ddr3_fpga_dm, //SSTL15 //Data Write Mask
inout [31:0] ddr3_fpga_dq, //SSTL15 //Data Bus
inout [3:0] ddr3_fpga_dqs_n, //SSTL15 //Diff Data Strobe - Neg
inout [3:0] ddr3_fpga_dqs_p, //SSTL15 //Diff Data Strobe - Pos
output ddr3_fpga_odt, //SSTL15 //On-Die Termination Enable
output ddr3_fpga_rasn, //SSTL15 //Row Address Strobe
output ddr3_fpga_resetn, //SSTL15 //Reset
output ddr3_fpga_wen, //SSTL15 //Write Enable
input ddr3_fpga_rzq, //OCT_rzqin //On-die termination enable
// input oct_rdn, //SSTL15 //On-die termination enable
// input oct_rup, //SSTL15 //On-die termination enable
`endif
`ifdef temp_sense
Temp. Sensor I/F
// SPI interface //
output wire temp_cs_n, // Chip Select
output wire temp_sclk, // Slave Clock
output wire temp_mosi, // Data Out
input wire temp_miso, // Data In
`endif
`ifdef vga
VIDEO
output wire vga_clk, // Video Clock
output wire vga_hs, // Horizontal Synch
output wire vga_vs, // Vertical Synch
output wire [7:0] vga_r, // Red
output wire [7:0] vga_g, // Green
output wire [7:0] vga_b, // Blue
output wire vga_blank_n, // Composite Blank Control
output wire vga_sync_n, // Composite Synch Control
`endif
`ifdef audio
AUDIO
input wire aud_adcdat, // ADC Serial Data or I2C_SCLK
input wire aud_adclrck, // FDDR3e clock
input wire aud_bclk, // Bit Clock
output wire aud_dacdat, // DAC Serial Data
inout wire aud_daclrck, // FDDR3e Clock
output wire aud_i2c_sclk,
inout wire aud_i2c_sdat,
output wire aud_mute,
output wire aud_xck,
`endif
`ifdef hsma
//HSMC-Port-A----------------------------------------------------
// input [2:1] hsmc_clkin_n,
input [2:1] hsmc_clkin_p,
// output [2:1] hsmc_clkout_n,
output [2:1] hsmc_clkout_p,
input hsmc_clk_in0,
output hsmc_clk_out0,
inout [3:0] hsmc_d,
`ifdef HSMC_XCVR
// input [7:0] hsmc_gxb_rx_n,
input [7:0] hsmc_gxb_rx_p,
// output [7:0] hsmc_gxb_tx_n,
output [7:0] hsmc_gxb_tx_p,
// input hsmc_ref_clk_n,
input hsmc_ref_clk_p,
`endif
// input [16:0] hsmc_rx_n,
input [16:0] hsmc_rx_p,
output hsmc_scl,
inout hsmc_sda,
// output [16:0] hsmc_tx_n,
output [16:0] hsmc_tx_p
`endif
QSPI Flash I/F ///
inout wire [3:0] fpga_epqc_data, // Flash Data
output wire fpga_epqc_dclk, // Data Clock
output wire fpga_epqc_ncso // Chip Select
);
// internal wires and registers declaration
wire [3:0] fpga_led_internal;
wire hps_fpga_reset_n;
// connection of internal logics
// assign user_led_fpga = ~fpga_led_internal;
assign user_led_fpga = fpga_led_internal;
soc_system u0 (
.clk_clk (clk_bot1), // clk.clk
.fpga_button_pio_export (user_pb_fpga), // fpga_button_pio.export
.fpga_dipsw_pio_export (user_dipsw_fpga), // fpga_dipsw_pio.export
.fpga_led_pio_export (fpga_led_internal), // fpga_led_pio.export
.hps_0_h2f_reset_reset_n (hps_fpga_reset_n), // hps_0_h2f_reset.reset_n
.hps_io_hps_io_emac1_inst_TX_CLK (hps_0_hps_io_hps_io_emac1_inst_TX_CLK), // hps_io.hps_io_emac1_inst_TX_CLK
.hps_io_hps_io_emac1_inst_TXD0 (hps_0_hps_io_hps_io_emac1_inst_TXD0), // .hps_io_emac1_inst_TXD0
.hps_io_hps_io_emac1_inst_TXD1 (hps_0_hps_io_hps_io_emac1_inst_TXD1), // .hps_io_emac1_inst_TXD1
.hps_io_hps_io_emac1_inst_TXD2 (hps_0_hps_io_hps_io_emac1_inst_TXD2), // .hps_io_emac1_inst_TXD2
.hps_io_hps_io_emac1_inst_TXD3 (hps_0_hps_io_hps_io_emac1_inst_TXD3), // .hps_io_emac1_inst_TXD3
.hps_io_hps_io_emac1_inst_RXD0 (hps_0_hps_io_hps_io_emac1_inst_RXD0), // .hps_io_emac1_inst_RXD0
.hps_io_hps_io_emac1_inst_MDIO (hps_0_hps_io_hps_io_emac1_inst_MDIO), // .hps_io_emac1_inst_MDIO
.hps_io_hps_io_emac1_inst_MDC (hps_0_hps_io_hps_io_emac1_inst_MDC), // .hps_io_emac1_inst_MDC
.hps_io_hps_io_emac1_inst_RX_CTL (hps_0_hps_io_hps_io_emac1_inst_RX_CTL), // .hps_io_emac1_inst_RX_CTL
.hps_io_hps_io_emac1_inst_TX_CTL (hps_0_hps_io_hps_io_emac1_inst_TX_CTL), // .hps_io_emac1_inst_TX_CTL
.hps_io_hps_io_emac1_inst_RX_CLK (hps_0_hps_io_hps_io_emac1_inst_RX_CLK), // .hps_io_emac1_inst_RX_CLK
.hps_io_hps_io_emac1_inst_RXD1 (hps_0_hps_io_hps_io_emac1_inst_RXD1), // .hps_io_emac1_inst_RXD1
.hps_io_hps_io_emac1_inst_RXD2 (hps_0_hps_io_hps_io_emac1_inst_RXD2), // .hps_io_emac1_inst_RXD2
.hps_io_hps_io_emac1_inst_RXD3 (hps_0_hps_io_hps_io_emac1_inst_RXD3), // .hps_io_emac1_inst_RXD3
.hps_io_hps_io_qspi_inst_IO0 (hps_0_hps_io_hps_io_qspi_inst_IO0), // .hps_io_qspi_inst_IO0
.hps_io_hps_io_qspi_inst_IO1 (hps_0_hps_io_hps_io_qspi_inst_IO1), // .hps_io_qspi_inst_IO1
.hps_io_hps_io_qspi_inst_IO2 (hps_0_hps_io_hps_io_qspi_inst_IO2), // .hps_io_qspi_inst_IO2
.hps_io_hps_io_qspi_inst_IO3 (hps_0_hps_io_hps_io_qspi_inst_IO3), // .hps_io_qspi_inst_IO3
.hps_io_hps_io_qspi_inst_SS0 (hps_0_hps_io_hps_io_qspi_inst_SS0), // .hps_io_qspi_inst_SS0
.hps_io_hps_io_qspi_inst_CLK (hps_0_hps_io_hps_io_qspi_inst_CLK), // .hps_io_qspi_inst_CLK
.hps_io_hps_io_sdio_inst_CMD (hps_0_hps_io_hps_io_sdio_inst_CMD), // .hps_io_sdio_inst_CMD
.hps_io_hps_io_sdio_inst_D0 (hps_0_hps_io_hps_io_sdio_inst_D0), // .hps_io_sdio_inst_D0
.hps_io_hps_io_sdio_inst_D1 (hps_0_hps_io_hps_io_sdio_inst_D1), // .hps_io_sdio_inst_D1
.hps_io_hps_io_sdio_inst_CLK (hps_0_hps_io_hps_io_sdio_inst_CLK), // .hps_io_sdio_inst_CLK
.hps_io_hps_io_sdio_inst_D2 (hps_0_hps_io_hps_io_sdio_inst_D2), // .hps_io_sdio_inst_D2
.hps_io_hps_io_sdio_inst_D3 (hps_0_hps_io_hps_io_sdio_inst_D3), // .hps_io_sdio_inst_D3
.hps_io_hps_io_usb1_inst_D0 (hps_0_hps_io_hps_io_usb1_inst_D0), // .hps_io_usb1_inst_D0
.hps_io_hps_io_usb1_inst_D1 (hps_0_hps_io_hps_io_usb1_inst_D1), // .hps_io_usb1_inst_D1
.hps_io_hps_io_usb1_inst_D2 (hps_0_hps_io_hps_io_usb1_inst_D2), // .hps_io_usb1_inst_D2
.hps_io_hps_io_usb1_inst_D3 (hps_0_hps_io_hps_io_usb1_inst_D3), // .hps_io_usb1_inst_D3
.hps_io_hps_io_usb1_inst_D4 (hps_0_hps_io_hps_io_usb1_inst_D4), // .hps_io_usb1_inst_D4
.hps_io_hps_io_usb1_inst_D5 (hps_0_hps_io_hps_io_usb1_inst_D5), // .hps_io_usb1_inst_D5
.hps_io_hps_io_usb1_inst_D6 (hps_0_hps_io_hps_io_usb1_inst_D6), // .hps_io_usb1_inst_D6
.hps_io_hps_io_usb1_inst_D7 (hps_0_hps_io_hps_io_usb1_inst_D7), // .hps_io_usb1_inst_D7
.hps_io_hps_io_usb1_inst_STP (hps_0_hps_io_hps_io_usb1_inst_STP), // .hps_io_usb1_inst_STP
.hps_io_hps_io_usb1_inst_DIR (hps_0_hps_io_hps_io_usb1_inst_DIR), // .hps_io_usb1_inst_DIR
.hps_io_hps_io_usb1_inst_NXT (hps_0_hps_io_hps_io_usb1_inst_NXT), // .hps_io_usb1_inst_NXT
.hps_io_hps_io_spim0_inst_CLK (hps_0_hps_io_hps_io_spim0_inst_CLK), // .hps_io_spim0_inst_CLK
.hps_io_hps_io_spim0_inst_MOSI (hps_0_hps_io_hps_io_spim0_inst_MOSI), // .hps_io_spim0_inst_MOSI
.hps_io_hps_io_spim0_inst_MISO (hps_0_hps_io_hps_io_spim0_inst_MISO), // .hps_io_spim0_inst_MISO
.hps_io_hps_io_spim0_inst_SS0 (hps_0_hps_io_hps_io_spim0_inst_SS0), // .hps_io_spim0_inst_SS0
.hps_io_hps_io_spim1_inst_CLK (hps_0_hps_io_hps_io_spim1_inst_CLK), // .hps_io_spim1_inst_CLK
.hps_io_hps_io_spim1_inst_MOSI (hps_0_hps_io_hps_io_spim1_inst_MOSI), // .hps_io_spim1_inst_MOSI
.hps_io_hps_io_spim1_inst_MISO (hps_0_hps_io_hps_io_spim1_inst_MISO), // .hps_io_spim1_inst_MISO
.hps_io_hps_io_spim1_inst_SS0 (hps_0_hps_io_hps_io_spim1_inst_SS0), // .hps_io_spim1_inst_SS0
.hps_io_hps_io_uart0_inst_RX (hps_0_hps_io_hps_io_uart0_inst_RX), // .hps_io_uart0_inst_RX
.hps_io_hps_io_uart0_inst_TX (hps_0_hps_io_hps_io_uart0_inst_TX), // .hps_io_uart0_inst_TX
.hps_io_hps_io_i2c1_inst_SDA (hps_0_hps_io_hps_io_i2c1_inst_SDA), // .hps_io_i2c1_inst_SDA
.hps_io_hps_io_i2c1_inst_SCL (hps_0_hps_io_hps_io_i2c1_inst_SCL), // .hps_io_i2c1_inst_SCL
.hps_io_hps_io_gpio_inst_HLGPI0 (hps_0_hps_io_hps_io_gpio_inst_GPIO0), // .hps_io_gpio_inst_HLGPI0
.hps_io_hps_io_gpio_inst_HLGPI1 (hps_0_hps_io_hps_io_gpio_inst_HLGPI1), // .hps_io_gpio_inst_HLGPI1
.hps_io_hps_io_gpio_inst_HLGPI2 (hps_0_hps_io_hps_io_gpio_inst_HLGPI2), // .hps_io_gpio_inst_HLGPI2
.hps_io_hps_io_gpio_inst_HLGPI3 (hps_0_hps_io_hps_io_gpio_inst_HLGPI3), // .hps_io_gpio_inst_HLGPI3
.hps_io_hps_io_gpio_inst_HLGPI4 (hps_0_hps_io_hps_io_gpio_inst_HLGPI4), // .hps_io_gpio_inst_HLGPI4
.hps_io_hps_io_gpio_inst_HLGPI5 (hps_0_hps_io_hps_io_gpio_inst_HLGPI5), // .hps_io_gpio_inst_HLGPI5
.hps_io_hps_io_gpio_inst_HLGPI6 (hps_0_hps_io_hps_io_gpio_inst_HLGPI6), // .hps_io_gpio_inst_HLGPI6
.hps_io_hps_io_gpio_inst_HLGPI7 (hps_0_hps_io_hps_io_gpio_inst_HLGPI7), // .hps_io_gpio_inst_HLGPI7
.hps_io_hps_io_gpio_inst_HLGPI8 (hps_0_hps_io_hps_io_gpio_inst_HLGPI8), // .hps_io_gpio_inst_HLGPI8
.hps_io_hps_io_gpio_inst_HLGPI9 (hps_0_hps_io_hps_io_gpio_inst_HLGPI9), // .hps_io_gpio_inst_HLGPI9
.hps_io_hps_io_gpio_inst_HLGPI10 (hps_0_hps_io_hps_io_gpio_inst_HLGPI10), // .hps_io_gpio_inst_HLGPI10
.hps_io_hps_io_gpio_inst_HLGPI11 (hps_0_hps_io_hps_io_gpio_inst_HLGPI11), // .hps_io_gpio_inst_HLGPI11
.hps_io_hps_io_gpio_inst_HLGPI12 (hps_0_hps_io_hps_io_gpio_inst_HLGPI12), // .hps_io_gpio_inst_HLGPI12
.hps_io_hps_io_gpio_inst_HLGPI13 (hps_0_hps_io_hps_io_gpio_inst_HLGPI13), // .hps_io_gpio_inst_HLGPI13
.hps_io_hps_io_gpio_inst_GPIO09 (hps_0_hps_io_hps_io_gpio_inst_GPIO09), // .hps_io_gpio_inst_GPIO09
.memory_mem_a (memory_mem_a), // memory.mem_a
.memory_mem_ba (memory_mem_ba), // .mem_ba
.memory_mem_ck (memory_mem_ck), // .mem_ck
.memory_mem_ck_n (memory_mem_ck_n), // .mem_ck_n
.memory_mem_cke (memory_mem_cke), // .mem_cke
.memory_mem_cs_n (memory_mem_cs_n), // .mem_cs_n
.memory_mem_ras_n (memory_mem_ras_n), // .mem_ras_n
.memory_mem_cas_n (memory_mem_cas_n), // .mem_cas_n
.memory_mem_we_n (memory_mem_we_n), // .mem_we_n
.memory_mem_reset_n (memory_mem_reset_n), // .mem_reset_n
.memory_mem_dq (memory_mem_dq), // .mem_dq
.memory_mem_dqs (memory_mem_dqs), // .mem_dqs
.memory_mem_dqs_n (memory_mem_dqs_n), // .mem_dqs_n
.memory_mem_odt (memory_mem_odt), // .mem_odt
.memory_mem_dm (memory_mem_dm), // .mem_dm
.memory_oct_rzqin (memory_oct_rzqin), // .oct_rzqin
.reset_reset_n (hps_fpga_reset_n) // reset.reset_n
);
endmodule
对工程文件进行分析综合
由于系统中的HPS是在Qsys集成工具中例化得到,因此除了所使用的外部存储器引脚以外,其他的专用引脚不需要再Quartus中进行分配,而是在HSP例化过程中由Qsys自动完成HPS的引脚分配,并把相关信息保存在XML格式的文件中提供给软件开发工具使用。但是HPS的外部存储器引脚需要在Quartus中进行引脚分配,该引脚分配信息同样保存在Tcl脚本文件中,只需要执行该脚本文件即可。
Tool->Tcl Scripts->hps_sdram_p0_pin_assignments.tcl->run
执行完后可以在Tcl Console总查看执行结果
最后进行外设引脚分配、工程编译产生.sof文件、下载到FPGA开发板上,整个硬件平台建立完毕
1.6 硬件系统外设的输入/输出测试
系统控制台(Syetem Console)是一种硬件调试工具,通过Tcl脚本命令可以对Qsys中定制的FPGA部分的外设进行测试。在Syetem Console中通过执行Tcl命令可以读取输入PIO寄存器的状态,也可以向输出PIO寄存器写入需要输出的结果
1.7 相关代码
基于Qsys的HPS模型设计资源-CSDN文库
参考文献:文章来源:https://www.toymoban.com/news/detail-620186.html
基于FPGA的嵌入式系统设计—Altera Soc FPGA
Cyclone V SoC FPGA和 Arria V SoC FPGA设计指南概述 (intel.cn)
Cyclone V SoC GSRD | Documentation | RocketBoards.org文章来源地址https://www.toymoban.com/news/detail-620186.html
到了这里,关于SOC FPGA之HPS模型设计(一)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!