线性代数的学习和整理2:线性代数的基础知识(整理ing)

这篇具有很好参考价值的文章主要介绍了线性代数的学习和整理2:线性代数的基础知识(整理ing)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

1 写在前面的话

1.1 为什么要先总结一些EXCEL计算矩阵的工具性知识, 而不是一开始就从基础学起呢?

 1.2 关于线性代数入门时的各种灵魂发问:

1.3 学习资料

2 什么是线性(关系)?

2.1 线性的到底是一种什么关系:

线性关系=正比例/正相关关系 ≠ 直线型关系

2.2 一次函数的只是一种 直线性关系

2.3 线性的严格定义

2.4 向量和矩阵的平直概念(也是线性关系的另一种说法:图形上是直线,不能是2次函数,或指数函数等等)

3   从函数的角度看线性

3.1 一些函数的定义回顾

3.2 函数与几何图形的对应

3.3 一次函数和线性函数 不是一回事

3.3.1 一次函数:形如如 y=ax+b  或  z=ax+by+c

3.3.2 特殊一次函数:形如y=ax 或 z=ax+by

3.4 函数和矩阵的联系

3.4.1 函数和矩阵

3.4.2 函数方程组 和 矩阵

3.5 某种意义上说,这就是线性代数的本质?

4 线性相关在向量/矩阵里的作用和应用

4.1 线性相关

4.2 线性相关的严格定义

4.2.1 直观的感觉

4.2.2 原始严格定义1(更直观:1个向量与多个其他向量的关系)

4.2.3 严格定义2 (把 所有要比较的向量看作一个整体)

4.2.4  线性相关的几何意义

2维向量之间线性相关

多个3维向量之间的线性相关的几何关系就不好想象了

4.3 线性组合的意思

4.3.1 线性组合的具体方法

4.4 线性变换(可以线性变换的矩阵之间是等价矩阵)

4.4.1 线性变换内容

4.4.2 线性变换的作用举例(作用很多,很大)

4.5 线性变换(线性映射)的意义?

4.6 线性相关的其他意义

5 线性无关/线性独立

5.1  线性无关的定义

5.2 线性无关有什么用呢?

6 线性代数的本质

6.1 线性代数和普通代数的区别

6.2 某种意义上说,这就是线性代数的本质?

6.3 对应到EXCEL的操作,EXCEL的数组公式= 线性代数计算

6.4 线性代数的核心是什么

6.5 线性代数是人造的,还是自然的?


1 写在前面的话

1.1 为什么要先总结一些EXCEL计算矩阵的工具性知识, 而不是一开始就从基础学起呢?

      还是那个老问题和老答案:虽然一般的学习路径是需要先了解基础知识才能运用。但是我觉得先能用到觉得有用,然后再去提问,这样的反馈循环能促进人的学习,我更适合后者,能用到了再回过头来学习更好

     另外,上学时是学过线代的,但是现在全忘了,还是因为没有理解导致的,这次尽量能先学懂,再考虑去学习各自计算技巧,多去思考和理解线性代数的本质,而不是只会算几个题而已,那样过段时间还是会忘。

    最后:最大的原因,直接这么找一本书埋头学,不以应用的目的去学,我可能早放弃了

 1.2 关于线性代数入门时的各种灵魂发问:

  1. 什么是线性
  2. 什么是线性相关 ?
  3. 为什么叫线性变换?
  4. 为什么叫线性代数?

     其实回答这些问题,还是会者不难,难者不会,但是对初学者理清概念非常重要。

     学一门课的时候知道它在干啥为什么要研究这些问题真的很重要,虽然这些问题需要深度学习后才能有较深的理解,但是我试着开头就回答下这些问题,以后可以逐步来修改,毕竟,这是学习笔记而已。

   

1.3 学习资料

  • 能看知乎,别看百度,能看B站,别看知乎
  • 百度写的你看不懂,
  • 知乎写的很可能都是片段

麻省理工学院 - MIT - 线性代数(我愿称之为线性代数教程天花板)_哔哩哔哩_bilibili麻省理工学院 - MIT - 线性代数(我愿称之为线性代数教程天花板)共计35条视频,包括:1.01方程组的几何解释、2.02矩阵消元、3.03乘法和逆矩阵等,UP主更多精彩视频,请关注UP账号。https://www.bilibili.com/video/BV16Z4y1U7oU/?spm_id_from=333.337.search-card.all.click

3bule1brown的视频,B站有原作者自己发的视频,有多牛逼就不用我说了

【熟肉】线性代数的本质 - 00 - “线性代数的本质”系列预览_哔哩哔哩_bilibili线性代数的本质(Essense of Linear Algebra)系列作者:@3Blue1Brown ( https://www.youtube.com/channel/UCYO_jab_esuFRV4b17AJtAw )视频源地址:https://www.youtube.com/watch?v=kjBOesZCoqc听译、时间轴、压制:@Solara57000 - “线性代数的本质”系列的简介, 视频播放量 392850、弹幕量 579、点赞数 10225、投硬币枚数 7107、收藏人数 18635、转发人数 9114, 视频作者 3Blue1Brown, 作者简介 中国官方账号。深入浅出、直观明了地分享数学之美。资助页面:www.patreon.com/3blue1brown,相关视频:【熟肉】线性代数的本质 - 01 - 向量究竟是什么?,【数学漫步之旅】看点1:证明“证明”的本身 竖版,【纪录片】数学漫步之旅 01 本福特定律,【纪录片】数学漫步之旅 02 无穷小微积分,【23考研】线代非李永乐不可吗?跟其他老师,我的线代考砸了| 听课与做题| 规划与建议,【搬运】【线性代数】线性代数的本质,矩阵的秩--直观解释,【熟肉】线性代数的本质 - 03 - 矩阵与线性变换,考研数学线性代数老师推荐,现在看到还不晚!,考研线代可以选张宇老师吗?https://www.bilibili.com/video/BV1rs411k7ru/?spm_id_from=333.999.0.0&vd_source=5fa6d2958ae880d9550a17f8050fd5ed其他书

  • MIT《introduction to linear algebra》
  • 《线性代数应该这样学》
  • 《程序员的数学,线性代数》
  • 《马同学图解线性代数》
  • 《线性代数及其应用》
  • 《线性代数的几何意义》
  • 《简明线性代数》

2 什么是线性(关系)?

  • 最直观的回答是:直线型?长的像直线的就是线性关系
  • 图形上,形如直线的就是线性?
  • 那从函数形式上看呢? y=Ax是吗?  y=Ax+b 是吗?
  • 这些说法对吗?

2.1 线性的到底是一种什么关系:

线性关系=正比例/正相关关系 ≠ 直线型关系

线性,指量与量之间按比例、成直线的关系,在空间和时间上代表规则和光滑的运动;而非线性则指不按比例、不成直线的关系,代表不规则的运动和突变。

什么是线性呢?文字定义

  • 是一种正比例关系,正相关关系
  • 是一种,自变量(输入内容)按比例变化,因变量(输出内容)按相同比例变化的关系
  • 而不是只是直线性关系就是线性关系,直线性关系还不够
  • 所以y=ax 是线性关系
  • 而y=ax+b 只是直线性关系,不是线性关系

反例:非线性

线性代数的学习和整理2:线性代数的基础知识(整理ing),线性代数,学习,矩阵

比较,确实不是正比例

  • y1=F1(x)=ax
  • y2=F2(x)=ax+b

线性代数的学习和整理2:线性代数的基础知识(整理ing),线性代数,学习,矩阵

从其他学科的角度看非线性就表示输入输出不是一种正比例关系

  • 比如y看成是输出,x看成是输入
  • 把函数  y=F(x)=ax+b ,显然y和x不是正比例关系
  • 而函数  y=F(x)=ax,显然y和x就是是正比例关系

线性与非线性的基本\u000B定义、主要区别\u000B及界定方法非线性的特点是:横断各个专业,渗透各个领域,几乎可以说是:“无处不在时时有。”确实如此。https://mp.weixin.qq.com/s?__biz=MzA4Nzg4MDY1Mw==&mid=2652410152&idx=4&sn=16d7fa55ec90d1c04a6b13a757e8df76&chksm=8bde978abca91e9c359534c9ceacab381fa162835c140ad91b7ced6f16d28f5ca3d93828f8e3&scene=27

2.2 一次函数的只是一种 直线性关系

  • 一次函数,只是一种直线型关系
  • 过原点的一次函数才是线性关系,y=ax是线性关系

2.3 线性的严格定义

  • 线性:linear
  • 非线性:non-linear,nonlinearity

线性,必须满足齐次性和可加性,才算线性

  1. 齐次性:L(ax)=aL(x)
  2. 可加性/叠加性/叠加原理:L(x+y)=L(x) + L(y)

从定义上看,因为 ky=k(ax+b)=kax+kb ≠  kax+b 所以  y=ax+b 确实不是线性关系!

线性代数中的矩阵 AX=Y,虽然是有矩阵做参数,但本质也是函数 ,都可以用线性函数的定义来看

2.4 向量和矩阵的平直概念(也是线性关系的另一种说法:图形上是直线,不能是2次函数,或指数函数等等)

矩阵的平直概念也属于线性无关的一种说法

有的地方有矩阵平直的概念,

  • 即矩阵需要时线性增长的意思
  1. 比如1个向量10,10个向量如果是100,那就是平直概念,其实就是按比例放大,直线比例,正相关比例,线性变换的意思。用图形上说,一般就是一根直线。
  2. 其实完全可以说是,直线关系,倍数关系,正比例关系等等
  3. 比如1个向量10,10个向量如果是90,那就不是平直概念,其实就是没按比例放大,比如是是一种其他类型的函数,比如二次函数,三次函数

3   从函数的角度看线性

一般的相法就是,函数里的线性,应该就是直线性吧?这样对吗?

3.1 一些函数的定义回顾

  • 一元函数, 只有1个自变量的函数,y=F(x)
  • 二元函数, 只有2个自变量的函数,z=F(x,y)
  • ...
  • 一次函数,  形如 y=F(x)= ax+.....+b 之类的函数,所有自变量的次数最高为1
  • 甚至 y=sinx也是一次函数
  • 二次函数,  形如 y=F(x)= ax^2+bx.....+c 之类的函数,所有自变量的最高次为2次
  • ...
  • 一元一次函数,  形如 y=F(x)= ax+.....+b 之类的函数
  • 二元一次函数,  形如 z=F(x,y)= ax+by.....+c 之类的函数
  • 二元二次函数,  形如 z=F(x,y)= ax^2+bx+cy^2.....+c 之类的函数

3.2 函数与几何图形的对应

  • 一次函数,y=ax+b 在2维空间是一条直线
  • 一次函数,z=ax+by+c 在3维空间是一个平面
  • 2元1次函数  z=F(x,y)=ax+by+c 可以形变为 ax+by-z+c=0 就是3维空间里的一个平面

线性代数的学习和整理2:线性代数的基础知识(整理ing),线性代数,学习,矩阵线性代数的学习和整理2:线性代数的基础知识(整理ing),线性代数,学习,矩阵

  • 2次函数,y=ax^2 在2维空间是一条曲线
  • 2次函数,y=ax^2+by^2+c 在3维空间是一个曲面

线性代数的学习和整理2:线性代数的基础知识(整理ing),线性代数,学习,矩阵  线性代数的学习和整理2:线性代数的基础知识(整理ing),线性代数,学习,矩阵

3.3 一次函数和线性函数 不是一回事

3.3.1 一次函数:形如如 y=ax+b  或  z=ax+by+c

  • 只能叫 直线性关系
  • 函数和自变量之间存在一次方函数关系
  • 图形是上是一条直线,如 y=ax+b有斜率a 和截距b
  • 极端的例子,y=cosx 是一次函数,但是不是线性函数

3.3.2 特殊一次函数:形如y=ax 或 z=ax+by

  • 图形上是过原点的一次函数,如 y=ax 只有斜率
  • 这个叫线性关系,或者 正比例关系/正相关关系

3.4 函数和矩阵的联系

3.4.1 函数和矩阵

  • y=ax,是函数
  • y=Ax,是函数,也是矩阵变换,其中A是矩阵,y,x 都是向量
  • 本质 y=ax  和 y=Ax 就是一回事

3.4.2 函数方程组 和 矩阵

  • 矩阵就是由向量组成的
  • 向量/数组
  • 函数方程组 → 系数矩阵 → 增广矩阵
  • 所以函数的线性相关,在矩阵里也很重要

3.5 某种意义上说,这就是线性代数的本质?

  • y=ax,是函数,y和x是单个数字
  • y=Ax,是函数,也是矩阵变换,其中A是矩阵,y,x 都是向量
  • 但是本质 y=ax  和 y=Ax 就是一回事可以统一起来
  • 所以,线性代数,其实就是处理 向量/数组的数学,而不是处理单个数字的数学!?

4 线性相关在向量/矩阵里的作用和应用

4.1 线性相关

线性相关是针对个多个变量说的

  • 2个向量,它们线性相关,或线性无关
  • 3个向量,它们线性相关,或线性无关
  • ....
  • n个向量,它们线性相关,或线性无关

4.2 线性相关的严格定义

  • 正面:线性相关---→ 就是等价向量
  • 反面:线性无关/线性独立

4.2.1 直观的感觉

  • 某向量经过线性变化后可以变换成另外一个向量,
  • 如果有多个向量,其中一个可以被其他向量线性组成,那么就是线性相关的,否则就是线性无关的
  • 比如 {1,2,3} ,{2,4,6} 这2个向量显然就是线性相关的
  • 也就是{2,4,6} =2*{1,2,3} = {2*1,2*2,2*3}

4.2.2 原始严格定义1(更直观:1个向量与多个其他向量的关系)

注意这里,α1是一个数组/向量,而不是数组里的一个具体的数字,比如α1={x1,x2......}

(线性代数矩阵等肯定是研究 数组/向量之间的关系,而绝不是单个数字之间的关系)

如果 A中的多个向量: α1, α2, α3, .....αn ,如果存在一组实数k1,k2,k3....kn,

可以使得b=k1*α1+ k2*α2+...+ kn*αn ,

那么b 就和A包含这多个向量组 α1, α2, α3.....αn是线性相关的。

这一组实数k1,k2,k3....kn不要求全不为0

举例子

  • RGB,比如 (255,255,0)  可以用 k1* (100,100,0) +k2* (0,255,0) 组成,所有是线性相关的,所以(255,255,0) 和k1* (100,100,0) +k2* (0,255,0) 某些时候是等价的。
  •  (255,255,0) =255/100* (100,100,0) +0* (0,255,0) 其实  (255,255,0)与(100,100,0) 这1个向量就已经线性相关 了
  • RGB,比如 (255,0,0)不能用 k1*  (0,100,100)+  k2* (0,255,0) 组成,怎么都不行,所以是线性无关的。

4.2.3 严格定义2 (把 所有要比较的向量看作一个整体)

注意这里,α1是一个数组/向量,而不是数组里的一个具体的数字,比如α1={x1,x2......} 

(线性代数矩阵等肯定是研究 数组/向量之间的关系,而绝不是单个数字之间的关系)

如果 A中的多个向量:α1, α2, α3, .....αn ,如果存在不全部为0的一组实数k1,k2,k3....kn,可以使得k1*α1+ k2*α2+...+ kn*αn=0 ,

那么这些向量 α1, α2, α3, α4, .....αn就是线性相关的

4.2.4  线性相关的几何意义

线性相关是针对个多个变量说的,那这些变量如果线性相关会有什么几何表现呢?

  • 2个向量
  • 3个向量
  • ....
  • n个向量

1维向量之间线性相关?有意义吗?

  • 首先一维向量,都是数轴直线上的一个点,看不出什么几何意义
2维向量之间线性相关
  • 2个2维向量线性相关
  1. 在XOY平面上的同一条直线上,方向相同或不同
  2. 在XOY平面是平行关系(理论上存在,实际上xoy向量空间里没这种向量)----我觉得向量的空间里,所有向量都是从原点出发的,因此,不存在有2个向量平行这种说法和可能性。所以才可以用终点坐标(0,1) 这种就代表了一个向量,默认所有向量都是从原点出发的。

线性代数的学习和整理2:线性代数的基础知识(整理ing),线性代数,学习,矩阵

  • 3个2维向量线性相关
  1. 其中1个可以线性变化为另外1个
  2. 其中2个可以线性变化为另外1个,就是这2个向量可以线性相加为第3个,就是三角形关系
  • 4个2维向量线性相关
  1. 其中1个可以线性变化为另外1个
  2. 其中2个可以线性变化为另外1个
  3. 其中3个可以线性变化为另外1个,就是这3个向量可以线性相加为第4个

线性代数的学习和整理2:线性代数的基础知识(整理ing),线性代数,学习,矩阵

......

多个3维向量之间的线性相关的几何关系就不好想象了

4.3 线性组合的意思

  • 比如某向量组{v1,v2...vn}  可以是2个,3个或更多
  • 但是一般是2个向量组--组成XOY平面,而3个向量组组成XOYOZ空间
  • V=span(v1,v2,....,vn) ={k1v1+k2v2+....+kb*vn}
  • 也就是某向量组{v1,v2...vn} 进行任意线性组合,其结果仍然在向量空间内。

4.3.1 线性组合的具体方法

线性组合的方法包含如下这些:

  • 加法
  • 标量乘法

4.4 线性变换(可以线性变换的矩阵之间是等价矩阵)

如果1个矩阵可以线性变换位另外一个矩阵,那么这两个矩阵就是等价矩阵

4.4.1 线性变换内容

  • 矩阵的初等行变换与初等列变换合称为矩阵的初等变换。
  • 矩阵的初等行变换
  1. 交换矩阵的两行
  2. 以一个非零数k (倍数) 乘矩阵的某一行所有元素
  3. 把矩阵的某一行所有元素乘以一个数k后加到另一行对应的元素 (倍加)
  • 矩阵的初等列变换
  1. 交换矩阵的两列
  2. 以一个非零数k (倍数)乘矩阵的某一列所有元素
  3. 把矩阵的某一列所有元素乘以一个数k后加到另一列对应的元素 (倍加)

4.4.2 线性变换的作用举例(作用很多,很大)

  • 如果1个矩阵可以线性变换位另外一个矩阵,那么这两个矩阵就是等价矩阵
  • 可以利用线性变换求矩阵的逆矩阵,见下面增广矩阵方法
  • 线性变化,变成最简矩阵,求矩阵的秩
  • 线性变化,变成上三角矩阵等等
  • 线性变化,变成对角矩阵等等

线性代数的学习和整理2:线性代数的基础知识(整理ing),线性代数,学习,矩阵

4.5 线性变换(线性映射)的意义?

线性变换,指的是线性空间上,满足

T(α+β)=T(α)+T(β)

T(kα)=kT(α)

那这和直线有什么关系?

  • 见线性相关的定义,这个和成正反比例关系很大,和直线的关系也有!
  • 标量乘法:数乘运算,可以看作直线上做伸缩+方向变换
  • 加法运算:可以用三角形法则,首位相接的形式可以来解释,2个分段向量可以等价于1个总向量图形上生成的还是直线。
  • 这种映射把空间里原来的 直线,仍然映射成 直线,而不会“扭曲”成曲线;
  • 同时保持原点不动(原点动的就叫“仿射变换”了…)

4.6 线性相关的其他意义

  • 如果不用空间的视角,
  • 比如用RGB颜色叠加的思路,加入有一种维度更高的色彩构成比如RGBXXX
  • 其实3维,4维。。。n维不过都是多个向量空间叠加而成

5 线性无关/线性独立

5.1  线性无关的定义

  • 与前面的定义相反

5.2 线性无关有什么用呢?

线性无关最典型的例子:文章来源地址https://www.toymoban.com/news/detail-620288.html

  • 向量空间的之间都是线性无关的。(线性相关的向量无法作为线性空间的基)

6 线性代数的本质

6.1 线性代数和普通代数的区别

  • 有种说法是这样的
  1. 普通代数,就是以 单个数为研究对象的数学
  2. 线性代数,就是以 数组(数组/向量:把多个数当作整体)为研究对象的数学

6.2 某种意义上说,这就是线性代数的本质?

  • y=ax,是函数,y和x是单个数字
  • y=Ax,是函数,也是矩阵变换,其中A是矩阵,y,x 都是向量/矩阵
  • 但是本质 y=ax  和 y=Ax 就是一回事可以统一起来
  • 所以,线性代数,其实就是处理 向量/数组的数学,而不是处理单个数字的数学!?

6.3 对应到EXCEL的操作,EXCEL的数组公式= 线性代数计算

  • 工作表函数,公式的操作对象是1个单元格
  • 数组函数,公式的操作对象是数组(多个单元格)
  • 这么理解数组公式,其实是挺高级的

6.4 线性代数的核心是什么

  • 核心是线性空间(向量空间),及其线性映射
  • 矩阵其实是线性变换的一个额外生造出来的辅助工具,1个类似 y=ax的参数数字a的类似的1个多维参数

6.5 线性代数是人造的,还是自然的?

  • 从我的层面,我只能理解到,这是数学家们发明的一个精巧的工具,用来认识世界和解决问题的数学工具,思考工具,计算工具
  • 笛卡尔的坐标系是一种线性坐标系(一般是指 直角坐标系
  • 而线性代数,在努力摆脱坐标系的影响,其实坐标系在线性代数里就是基,而比如向量矩阵,除了默认的自然基 (0,1) (1,0) 这种,理论上可以有无数组非线性相关的基,也就是坐标系可以很灵活选择,也可以很灵活的变换,不需要非是某些特别的坐标系。

到了这里,关于线性代数的学习和整理2:线性代数的基础知识(整理ing)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 轻松掌握线性代数-万字长文基础知识概览

    线性代数是一门将 m 维世界与 n 维世界联系起来的学科 映射:把集合 Y 的元素与集合 X 的元素相对应的规则叫做 “从集合 X 到集合 Y 的映射”。 像:通过映射 f 与 x i 相对应的集合 Y 的元素,叫做 x i 通过映射 f 形成的像,一般表示为 f(x i )。 线性映射的例子 f ( x ) = 2 x f(

    2024年02月11日
    浏览(83)
  • 线性代数的学习和整理1:用EXCEL进行基础的矩阵计算

    目录 1 写在最开始的话 EXCEL里计算线性代数的起点 心得 内容 2 EXCEL里矩形的加法 2.1  矩阵加法的性质 3 EXCEL里矩阵的减法 4 矩阵标量乘法/ 也称 数乘 4.1 矩阵的标量乘法的性质 5 矩阵点乘, 得到:点积/内积 ,使用mmult() 5.1 矩阵点乘规则 5.2  矩阵的乘法不符合交换性,不能交

    2024年03月20日
    浏览(52)
  • 线性代数的学习和整理15:线性代数的快速方法

       5  空间的同构 下面再谈谈同构。线性空间千千万,应如何研究呢?同构就是这样一个强大的概念,任何维数相同的线性空间之间是同构的,空间的维数是简单而深刻的,简单的自然数居然能够刻画空间最本质的性质。借助于同构,要研究任意一个n维线性空间,只要研究

    2024年02月11日
    浏览(59)
  • 线性代数的学习和整理9:线性代数的本质(未完成)

    目录 1 相关英语词汇 1.1 元素 1.2 计算 1.3 特征 1.4 线性相关 1.5 各种矩阵 1.6 相关概念 2 可参考经典线性代数文档 2.1 学习资料 2.2 各种文章和视频 2.3 各种书 2.4 下图是网上找的思维导图 3 线性代数的本质 3.1 线性代数是第2代数学模型 一般的看法 大牛总结说法: 3.2   线性代

    2024年02月09日
    浏览(59)
  • 线性代数的学习和整理2:什么是线性,线性相关,线性无关 及 什么是线性代数?

    目录 1 写在前面的话 1.1 为什么要先总结一些EXCEL计算矩阵的工具性知识, 而不是一开始就从基础学起呢?  1.2 关于线性代数入门时的各种灵魂发问: 1.3 学习资料 2 什么是线性(关系)? 2.1 线性的到底是一种什么关系: 线性关系=正比例/正相关关系 ≠ 直线型关系 2.2 一次函数

    2024年02月11日
    浏览(139)
  • 线性代数的学习和整理2:什么是线性,线性相关,线性无关 以及什么是线性代数?

    目录 1 写在前面的话 1.1 为什么要先总结一些EXCEL计算矩阵的工具性知识, 而不是一开始就从基础学起呢?  1.2 关于线性代数入门时的各种灵魂发问: 1.3 学习资料 2 什么是线性(关系)? 2.1 线性的到底是一种什么关系: 线性关系=正比例/正相关关系 ≠ 直线型关系 2.2 一次函数

    2024年02月10日
    浏览(56)
  • 线性代数的学习和整理9(草稿-----未完成)

    目录 1 相关英语词汇 1.1 元素 1.2 计算 1.3 特征 1.4 线性相关 1.5 各种矩阵 1.6 相关概念 2 可参考经典线性代数文档 2.1 学习资料 2.2 各种文章和视频 2.3 各种书 2.4 下图是网上找的思维导图 3 线性代数的本质 3.1 线性代数是第2代数学模型 一般的看法 大牛总结说法: 3.2   线性代

    2024年02月12日
    浏览(55)
  • 线性代数的学习和整理13: 函数与向量/矩阵

    目录 1 函数与 向量/矩阵 2 初等数学的函数 2.1 函数 2.2 函数的定义:定义域  →映射→  值域 3  高等数学里的函数:定义域和陪域/到达域(非值域)的映射关系 3.1 函数 3.2 单射,满射,双射等都是针对定义域 和 陪域的 3.3 易错地方:值域较小且是被决定的 3.4 单射,满射,

    2024年02月11日
    浏览(66)
  • 线性代数的学习和整理8:行列式相关

    目录 1 从2元一次方程组求解说起 1.1 直接用方程组消元法求解 1.2 有没有其他方法呢?有:比如2阶行列式方法 1.3  3阶行列式 2 行列式的定义 2.1 矩阵里的方阵 2.2  行列式定义:返回值为标量的一个函数 2.3 行列式的计算公式 2.4 克拉默法则 2.4.1 克拉默法则的内容 2.4.2 克拉默

    2024年02月11日
    浏览(44)
  • 线性代数的学习和整理7:各种特殊效果矩阵汇总

    目录 1 矩阵 1.1 1维的矩阵 1.2 2维的矩阵 1.3 没有3维的矩阵---3维的是3阶张量 1.4  下面本文总结的都是各种特殊效果矩阵特例 2 方阵: 正方形矩阵 3 单位矩阵 3.1 单位矩阵的定义 3.2 单位矩阵的特性 3.3 为什么单位矩阵I是 [1,0;0,1] 而不是[0,1;1,0] 或[1,1;1,1] 3.4 零矩阵 3.4 看下这个矩

    2024年02月11日
    浏览(48)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包