【使用维纳滤波进行信号分离】基于维纳-霍普夫方程的信号分离或去噪维纳滤波器估计(Matlab代码实现)

这篇具有很好参考价值的文章主要介绍了【使用维纳滤波进行信号分离】基于维纳-霍普夫方程的信号分离或去噪维纳滤波器估计(Matlab代码实现)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

维纳滤波器是一种常用的信号处理技术,可用于信号分离和去噪。基于维纳-霍普夫方程的维纳滤波器是一种理想滤波器,旨在最小化原始信号与滤波器输出之间的误差。

在信号分离或去噪任务中,我们有一个观测信号y,它可以被表示为原始信号s和加性噪声n的叠加:y = s + n。维纳滤波器的目标是找到一个滤波器h,使得滤波器的输出y' = h * y能够近似地估计原始信号s。

根据维纳-霍普夫方程,最优的维纳滤波器可以通过以下形式计算得到:

h = (P_ss * H^T) * (H * P_ss * H^T + P_nn)^(-1)

其中,H是观测信号y的转置矩阵,P_ss是原始信号s的自相关矩阵,P_nn是噪声n的自相关矩阵(通常被假设为对角矩阵)。

维纳滤波器的输出可以通过以下方式得到:

y' = h * y = (P_ss * H^T) * (H * P_ss * H^T + P_nn)^(-1) * y

通过将观测信号y代入上式,我们可以得到分离或去噪后的信号估计值y'。

需要注意的是,维纳滤波器的性能受到观测信号的统计特性以及原始信号和噪声的自相关性质的影响。因此,在使用维纳滤波器进行信号分离或去噪时,需要对信号和噪声的统计特性有一定的了解,并相应地选择合适的参数和技术。此外,维纳滤波器可能对信号的频谱产生一定的改变,因此在实际应用中需要仔细考虑这一点。

📚2 运行结果

【使用维纳滤波进行信号分离】基于维纳-霍普夫方程的信号分离或去噪维纳滤波器估计(Matlab代码实现),matlab,算法,开发语言

部分代码:

function [xest,B,MSE] = wienerFilt(x,y,N)
%
% Wiener filter based on Wiener-Hopf equations
%   This function takes as inputs a noisy signal, x, and a reference signal, y,
%   in order to compute a N-order linear filter that provides an estimate of y
%   from x
%  
% INPUTS
% x = noisy signal
% y = reference signalsinit
% N = filter order
%
% OUTPUTS
% xest = estimated signal
% b = Wiener filter coefficents
% MSE = mean squared error
%


X = 1/N .* fft(x(1:N));
Y = 1/N .* fft(y(1:N));
X = X(:);
Y = Y(:);

Rxx = N .* real(ifft(X .* conj(X))); % Autocorrelation function
Rxy = N .* real(ifft(X .* conj(Y))); % Crosscorrelation function
Rxx = toeplitz(Rxx);
Rxy = Rxy';
B = Rxy / Rxx; B = B(:); % Wiener-Hopf eq. B = inv(Rxx) Rxy
xest = fftfilt(B,x);
xest = xest(N+1:end); % cut first N samples due to distorsion during filtering operation
MSE = mean(y(N+1:end) - xest) .^2; % mean squared error

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]韩笑雪,孙尚,毛文梁.基于改进维纳滤波的自适应电力线通信降噪方法[J].电脑与信息技术,2023,31(03):55-57.DOI:10.19414/j.cnki.1005-1228.2023.03.018.

[2]唐佳瑶,罗一涵,谢宗良等.基于中频域维纳滤波的非视域成像算法研究[J].物理学报,2023,72(01):205-214.

[3]蒲素兰,谢慧雯,郭昊等.结合维纳滤波的相干波束合成超声成像研究[J].CT理论与应用研究,2022,31(06):793-808.DOI:10.15953/j.ctta.2022.043.文章来源地址https://www.toymoban.com/news/detail-620384.html

🌈4 Matlab代码实现

到了这里,关于【使用维纳滤波进行信号分离】基于维纳-霍普夫方程的信号分离或去噪维纳滤波器估计(Matlab代码实现)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 传统语音增强——基本的维纳滤波语音降噪算法

    一、维纳滤波的基本原理 基本维纳滤波就是用来解决从噪声中提取信号问题的一种过滤(或滤波)方法。它基于平稳随机过程模型,且假设退化模型为线性空间不变系统的。实际上这种线性滤波问题,可以看成是一种估计问题或一种线性估计问题。基本的维纳滤波是根据全部

    2024年02月04日
    浏览(43)
  • 数字图像处理——图像退化(大气湍流模型与运动模糊模型)与图像复原(逆滤波与维纳滤波)

    一般来说,图像的退化模型可以表示为 其中g(x,y) 表示退化后的图像,h(x,y)表示退化模型,f(x,y)表示原图像,n(x,y)表示噪声。 在频域上面可以表示为 下面介绍常见的两种退化模型:基于大气湍流物理特性的大气湍流模型和运动模糊模型。 1.大气湍流模型 退化模型: 伴随着

    2024年02月05日
    浏览(43)
  • 实验二利用MATLAB工具箱对混杂噪声的音频信号进行滤波

    要求:选择子作业1中的音频信号,自行给定滤波器的系统函数,分别采用时域线性卷积和差分方程两种方法对音频信号进行滤波处理,比较滤波前后信号的波形和回放的效果。 最终整体效果如下图: 1、音频信号的构建 ①音乐信号的产生:   采用 Adobe Audition 提取出一首

    2023年04月16日
    浏览(42)
  • 图像处理之图像复原[逆滤波、维纳滤波、约束最小二乘法、Lucy-Richardson和盲解卷积复原]

    一、图像复原与图像增强的区别 图像增强的目的是消除噪声,显现那些被模糊了的细节或简单地突出一幅图像中读者感兴趣的特征,不考虑图像质量下降的原因。图像复原是利用退化现象的某种先验知识,建立退化现象的数学模型,再根据模型进行反向的推演运算,以恢复原

    2023年04月13日
    浏览(43)
  • 【数字信号处理课程设计】基于MATLAB实现语音信号的采集与处理(偏重滤波)

    目录 一、目标与任务 二、原理介绍 2.1 录音原理 2.2 滤波器的设计原理及设计方法 2.3 IIR 数字滤波器设计原理 2.4 双线性变换法 三、GUI界面设计与实现 四、基于MATLAB仿真 4.1实验过程 4.2 结果分析 五、总结 5.1 函数用法总结 5.2 心得体会 六、参考文献 这个项目在我的B站上有专

    2024年01月18日
    浏览(57)
  • 基于小波变换的信号分离

    使用小波变换将信号进行分离。验证小波变换在信号处理中的有效性。 小波变换是一种非常重要的信号处理方法,可以将信号分解成不同频率的小波成分,从而进行信号的分析和处理。小波变换是一种具有局部性质的信号分析方法,它将信号分解成一组基函数,这些基函数是

    2024年02月11日
    浏览(38)
  • 【matalab】基于Octave的信号处理与滤波分析案例

    GNU Octave是一款开源软件,类似于MATLAB,广泛用于数值计算和信号处理。 一个简单的信号处理与滤波分析案例,说明如何在Octave中生成一个有噪声的信号,并设计一个滤波器来去除噪声。 首先,确保安装了Octave。可以从Octave官网下载并安装:GNU Octave 案例步骤如下: 1. 生成一

    2024年02月19日
    浏览(37)
  • 通过将信号频谱与噪声频谱进行比较,自动检测适当的带通滤波器转折频率研究(Matlab代码实现)

     💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 📚2 运行结果 🎉3 参考文献 🌈4 Matlab代码实现 corner

    2024年02月12日
    浏览(40)
  • 基于卡尔曼滤波的信号处理以及图像追踪Python实现

    这篇文章将由浅入深,从最简单的信号处理开始,到计算机视觉图像跟踪的应用。该文章使用Python语言,在进行视觉处理时,并未使用opencv自带的api,而是从矩阵运算进行逐步处理,更易于理解。 网上现在能看到的原理解释都很详细,这里就不多介绍。本人理解卡尔曼滤波的

    2024年02月05日
    浏览(55)
  • 136基于matlab的自适应滤波算法的通信系统中微弱信号检测程序

    基于matlab的自适应滤波算法的通信系统中微弱信号检测程序,周期信号加入随机噪声,进行滤波,输出滤波信号,程序已调通,可直接运行。 136 matlab自适应滤波算法LMS (xiaohongshu.com)

    2024年01月18日
    浏览(45)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包