【数据挖掘竞赛】——科大讯飞:锂离子电池生产参数调控及生产温度预测挑战赛

这篇具有很好参考价值的文章主要介绍了【数据挖掘竞赛】——科大讯飞:锂离子电池生产参数调控及生产温度预测挑战赛。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

🤵‍♂️ 个人主页:@Lingxw_w的个人主页

✍🏻作者简介:计算机科学与技术研究生在读
🐋 希望大家多多支持,我们一起进步!😄
如果文章对你有帮助的话,
欢迎评论 💬点赞👍🏻 收藏 📂加关注+ 

【科大讯飞】报名链接:https://challenge.xfyun.cn?invitaCode=GQTcFX 

目录

一、赛事背景文章来源地址https://www.toymoban.com/news/detail-620437.html

到了这里,关于【数据挖掘竞赛】——科大讯飞:锂离子电池生产参数调控及生产温度预测挑战赛的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 基于等效电路模型(RC)的锂离子电池参数在线辨识

            在电池管理系统(BMS)中,等效电路模型(ECM)是模拟电池动力学的常用方法。然而,模型的简单性和准确性之间总是存在着矛盾。简单的模型通常无法反映电池的所有动态效应,这可能会给参数识别带来误差。然而,一个复杂的模型总是有太多的参数需要识别,并可能存

    2024年02月02日
    浏览(43)
  • 锂离子储能电池安全IEC、UL、GB测试标准介绍

    1、 国际储能电池系统安全标准的特点:     国际上,储能系统的安全标准主要有IEC标准和UL标准。UL标准在北美应用广泛,其电池安全标准全面严谨,具有相当大的影响力。     国家地区 标准     参考 欧洲   EN62619 参考IEC62619 日本 JISC8715-28  参考IEC62619 澳大利亚  DRAS

    2024年02月05日
    浏览(36)
  • 使用遗忘因子最小二乘法(FFRLS)的锂离子电池二阶RC参数辨识

     之前写过一篇通过指数拟合来辨识电池模型参数的文章,今天就来给大家介绍如何使用simulink搭建最小二乘法来在线辨识电池模型参数。        本节首先介绍最小二乘法的基本原理,并在次基础上推导出递推最小二乘法及其改进算法的基本递推公式。        在一个系统中

    2023年04月18日
    浏览(37)
  • 基于自适应扩展卡尔曼滤波器(AEKF)的锂离子电池SOC估计(附MATLAB代码)

    AEKF_SOC_Estimation函数使用二阶RC等效电路模型(ECM)和自适应扩展卡尔曼滤波器(AEKF)估计电池的端电压(Vt)和充电状态(SOC)。该函数将以下内容作为输入:  · 电流(A) · 电压(V) · 温度(℃) 该函数的输出为: ·  估计SOC · 估计电压Vt · 电压Vt误差 加载电池模型参数以及不

    2023年04月23日
    浏览(38)
  • RBF-UKF径向基神经网络结合无迹卡尔曼滤波估计锂离子电池SOC(附MATLAB代码)RBF神经网络训练部分

    1.清空变量 2.导入数据用以RBF神经网络训练,一共14组,训练数据P(第一列为电压值,第二列为SOC值,第三列为电流值。),并将所有数据存储在变量PP中,所有电压数据存储在变量TT中。 3. 用第1、2、3、4、5组数据来训练网络 , 用第六组数据来测试网络的精度 。   4.建立

    2023年04月22日
    浏览(58)
  • 【数据挖掘算法与应用】——数据挖掘导论

    数据挖掘技术背景 大数据如何改变我们的生活 1.数据爆炸但知识贫乏   人们积累的数据越来越多。但是,目前这些数据还仅仅应用在数据的录入、查询、统计等功能,无法发现数据中存在的关系和规则,无法根据现有的数据预测未来的发展趋势,导致了“数据爆炸但知识

    2023年04月09日
    浏览(58)
  • 关联规则挖掘(上):数据分析 | 数据挖掘 | 十大算法之一

    ⭐️⭐️⭐️⭐️⭐️欢迎来到我的博客⭐️⭐️⭐️⭐️⭐️ 🐴作者: 秋无之地 🐴简介:CSDN爬虫、后端、大数据领域创作者。目前从事python爬虫、后端和大数据等相关工作,主要擅长领域有:爬虫、后端、大数据开发、数据分析等。 🐴欢迎小伙伴们 点赞👍🏻、收藏

    2024年02月07日
    浏览(52)
  • 数据挖掘-实战记录(一)糖尿病python数据挖掘及其分析

    一、准备数据 1.查看数据 二、数据探索性分析 1.数据描述型分析 2.各特征值与结果的关系 a)研究各个特征值本身类别 b)研究怀孕次数特征值与结果的关系 c)其他特征值 3.研究各特征互相的关系 三、数据预处理 1.去掉唯一属性 2.处理缺失值 a)标记缺失值 b)删除缺失值行数  c

    2024年02月11日
    浏览(49)
  • 数据挖掘(3.1)--频繁项集挖掘方法

    目录 1.Apriori算法 Apriori性质 伪代码 apriori算法 apriori-gen(Lk-1)【候选集产生】 has_infrequent_subset(c,Lx-1)【判断候选集元素】 例题 求频繁项集: 对于频繁项集L={B,C,E},可以得到哪些关联规则: 2.FP-growth算法 FP-tree构造算法【自顶向下建树】 insert_tree([plP],T) 利用FP-tree挖掘频繁项集

    2023年04月09日
    浏览(50)
  • 数据仓库与数据挖掘

    数据挖掘(Data mining),又译为资料探勘、数据采矿。它是数据库知识发现(Knowledge-Discovery in Databases,KDD)中的一个步骤。 数据挖掘一般是指从大量的数据中通过算法搜索隐藏于其中的信息的过程。 数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、

    2024年02月06日
    浏览(45)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包