论文笔记:Fine-Grained Urban Flow Prediction

这篇具有很好参考价值的文章主要介绍了论文笔记:Fine-Grained Urban Flow Prediction。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

2021 WWW

1 intro

  • 细粒度城市流量预测
    • 两个挑战
      • 细粒度数据中观察到的网格间的转移动态使得预测变得更加复杂
        • 需要在全局范围内捕获网格单元之间的空间依赖性
      • 单独学习外部因素(例如天气、POI、路段信息等)对大量网格单元的影响非常具有挑战性
    • ——>论文提出了时空关系网(STRN)来预测细粒度的城市流量
      • 骨干网络用于学习每个网格单元的高级表示
      • 全局关系模块(GloNet)捕获全局空间依赖性
      • 元学习器将外部因素和土地功能(例如POI密度)作为输入以产生元知识并提高模型性能

2  几个定义

2.1 网格单元

图3(a),分成H×W个网格

论文笔记:Fine-Grained Urban Flow Prediction,论文笔记,论文阅读

 2.2 城市流量

三维张量  一般K为2(流入 & 流出)

2.3 区域

  • 图3(c), 基于道路网络的不规则区域分割
    • 更自然,更语义丰富的空间分割
  • 每个区域由许多网格单元组成
    • 使用矩阵表示分配规则
      • N=HW
      • M为区域个数
      • bij表示网格单元i属于区域j的可能性

2.4 外部特征

  • 城市流量数据与外部因素(如天气状况,一天中的时间和事件)具有很强的相关性
  • 某个时间步t的这些外部因素表示为向量

2.5 土地特征

  • POI的类别、其在城市网格单元中的密度
    • 指示该单元的土地功能以及该单元中的交通模式
      • ——>有助于预测网格单元的城市流动
  • 公路网的结构(如快速路路段的数量)也为交通建模提供了很好的补充

——>将POI和土地特征结合在一起,表示为

3 模型

3.1 模型整体

论文笔记:Fine-Grained Urban Flow Prediction,论文笔记,论文阅读

 3.2  骨干网络

论文/机器学习笔记:SENet (Squeeze-and-Excitation Networks)_特征通道之间的相互依赖关系_UQI-LIUWJ的博客-CSDN博客

  • SENet 
    • 在每一层的小(局部)感受野内融合空间和通道信息
    • 被证明可以有效地产生紧凑而有区别的网格单元特征

论文笔记:Fine-Grained Urban Flow Prediction,论文笔记,论文阅读

 3.3 全局关系模块GloNet

论文笔记:Fine-Grained Urban Flow Prediction,论文笔记,论文阅读

  •  将骨干网络的输出 reshape成
    • N=HW
  • 生成网格和区域的分配矩阵

     文章来源地址https://www.toymoban.com/news/detail-620463.html

    • 可以基于道路网络执行静态区域分割
      • 无法捕获高度动态的交通状况和随时间变化的外部因素
    • 论文中通过函数δ基于Xℎ计算B
      • 论文笔记:Fine-Grained Urban Flow Prediction,论文笔记,论文阅读 
      • 【这会不会有一个隐患,就是我网格分配给了一个可能完全不搭边的很远的区域去了?】
    • 受到Mincut理论的启发,增加了一项Mincut 损失正则项来约束区域划分
      • 论文笔记:Fine-Grained Urban Flow Prediction,论文笔记,论文阅读
  • 基于 和
    • 得到对应的邻接矩阵和区域表征

       

      • 论文笔记:Fine-Grained Urban Flow Prediction,论文笔记,论文阅读
      • 其中是通过网格的邻接关系直接得到的邻接矩阵
  • ——>使用GCN进行信息传递

     



    • 论文笔记:SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLUTIONAL NETWORKS_切比雪夫图卷积论文_UQI-LIUWJ的博客-CSDN博客
    • 论文笔记:Fine-Grained Urban Flow Prediction,论文笔记,论文阅读
  • 获得了区域级别的全局感知特征H'后,投影回原始空间

    • 论文笔记:Fine-Grained Urban Flow Prediction,论文笔记,论文阅读

    •  

  • 最后进行张量的维度变换和经过最终的预测网络层(FC),得到预测结果 

3.4 损失函数

论文笔记:Fine-Grained Urban Flow Prediction,论文笔记,论文阅读

4 实验

4.1 实验数据

论文笔记:Fine-Grained Urban Flow Prediction,论文笔记,论文阅读

4.2 实验结果 

 论文笔记:Fine-Grained Urban Flow Prediction,论文笔记,论文阅读

4.3 预测精度 VS 参数量

 

 

到了这里,关于论文笔记:Fine-Grained Urban Flow Prediction的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 论文笔记:Traffic Flow Prediction via Spatial Temporal Graph Neural Network

    WWW 2020 图神经网络+图注意力——空间依赖关系 RNN+Transformer——短期长期依赖关系 缺点:运用RNN于较长序列仍然会带来误差积累,并且RNN模型的运算效率并不高   

    2024年02月12日
    浏览(48)
  • 论文笔记:Large Language Models as Urban Residents:An LLM Agent Framework for Personal Mobility Generati

    使用LMM生成活动轨迹的开创性工作 理解活动模式(mobility pattern)——能够灵活模拟城市移动性 尽管个体活动轨迹数据由于通信技术的进步而丰富,但其实际使用往往受到隐私顾虑的限制 ——生成的数据可以提供一种可行的替代方案,提供了效用和隐私之间的平衡 之前有很

    2024年03月11日
    浏览(67)
  • 【论文阅读笔记】Traj-MAE: Masked Autoencoders for Trajectory Prediction

    通过预测可能的危险,轨迹预测一直是构建可靠的自动驾驶系统的关键任务。一个关键问题是在不发生碰撞的情况下生成一致的轨迹预测。为了克服这一挑战,我们提出了一种有效的用于轨迹预测的掩蔽自编码器(Traj-MAE),它能更好地代表驾驶环境中智能体的复杂行为。 具体

    2024年02月06日
    浏览(42)
  • 论文笔记:Spatial-Temporal Large Language Model for Traffic Prediction

    arxiv 2024 时空+大模型

    2024年04月24日
    浏览(50)
  • [论文笔记] SurroundOcc: Multi-Camera 3D Occupancy Prediction for Autonomous Driving

    Wei, Yi, et al. “Surroundocc: Multi-camera 3d occupancy prediction for autonomous driving.” Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023. 将占用网格应用到多个相机构成的3D空间中; 使用BEVFormer中的方法获取3D特征, 然后使用交叉熵损失计算loss; 和BEVFormer区别是BEV中z轴高度为1, 这里

    2024年02月04日
    浏览(43)
  • 论文笔记:Dual Dynamic Spatial-Temporal Graph ConvolutionNetwork for Traffic Prediction

    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 2022 GCN和TCN被引入到交通预测中 GCN能够保留交通网络的图结构信息 TCN能够捕获交通流的时间特征 基于GCN的交通预测方法依赖于如何构建图或邻接矩阵 将道路段的交通测量作为节点 通过不同道路段的直接连接来构建图 道路段上的交通

    2024年02月03日
    浏览(60)
  • 【论文阅读笔记|ACL2022】Legal Judgment Prediction via Event Extraction with Constraints

    论文题目:Legal Judgment Prediction via Event Extraction with Constraints 论文来源:ACL2022 论文链接:https://aclanthology.org/2022.acl-long.48.pdf 代码链接:GitHub - WAPAY/EPM 近年来,虽然法律判断预测任务(LJP)取得了重大的进展,错误的预测SOTA LJP模型可以部分归因于他们未能(1)定位关键事件信息决

    2023年04月23日
    浏览(50)
  • 论文笔记--Llama 2: Open Foundation and Fine-Tuned Chat Models

    标题:Llama 2: Open Foundation and Fine-Tuned Chat Models 作者:Touvron H, Martin L, Stone K, et al. 日期:2023 期刊:arxiv preprint   文章训练并开源了模型Llama2系列模型。文章对Llama2做了大量的安全和有用性的微调,并进行了大量的数值试验,实验证明,Llama2-chat比其它被比较的开源的chat模型

    2024年02月12日
    浏览(42)
  • 论文笔记--Goat: Fine-tuned LLaMA Outperforms GPT-4 on Arithmetic Tasks

    标题:Goat: Fine-tuned LLaMA Outperforms GPT-4 on Arithmetic Tasks 作者:Tiedong Liu, Bryan Kian Hsiang Low 日期:2023 期刊:arxiv preprint   文章给出了一种可高精度完成基本数学运算的大模型Goat(Good at Arithmetic Tasks),相比于GPT-4,Goat在多位数字的基本运算(加减乘除)上有大幅的精度提升。  

    2024年02月12日
    浏览(34)
  • 论文笔记:Adaptive Graph Spatial-Temporal Transformer Network for Traffic Flow Forecasting

    论文地址 空间图中一个节点对另一个节点的影响可以跨越多个时间步,分别处理空间维度和时间维度数据的方法对直接建模 跨时空效应 可能是无效的。(在图形建模过程中需要考虑这种跨时空效应) 以前的工作通常使用从距离度量或其他地理联系构建的预定图结构,并使用

    2023年04月08日
    浏览(47)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包