文心一言 VS 讯飞星火 VS chatgpt (67)-- 算法导论6.5 6题

这篇具有很好参考价值的文章主要介绍了文心一言 VS 讯飞星火 VS chatgpt (67)-- 算法导论6.5 6题。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

文心一言 VS 讯飞星火 VS chatgpt (67)-- 算法导论6.5 6题

六、在 HEAP-INCREASE-KEY 的第 5 行的交换操作中,一般需要通过三次赋值来完成。想一想如何利用INSERTION-SORT 内循环部分的思想,只用一次赋值就完成这一交换操作?

文心一言:

在 HEAP-INCREASE-KEY 的第 5 行交换操作中,我们可以通过利用 INSERTION-SORT 内循环部分的思想来进行优化,从而只用一次赋值完成这一交换操作。

通常,在 HEAP-INCREASE-KEY 的第 5 行交换操作中,我们需要通过三次赋值来交换 key 和 y 的值。第一次赋值将 key 的值赋给临时变量 temp,第二次赋值将 temp 的值赋给 y,第三次赋值将 y 的值赋给 key。

然而,我们可以利用 INSERTION-SORT 内循环部分的思想,通过一次赋值就完成这一交换操作。具体步骤如下:

1.将 key 的值赋给一个临时变量 temp。

2.将 y 的值赋给 key。

3.将 temp 的值赋给 y。

通过以上步骤,我们只需要进行一次赋值操作就可以完成 key 和 y 的值的交换,从而优化了交换操作的效率。

文心一言 VS 讯飞星火 VS chatgpt (67)-- 算法导论6.5 6题,文心一言vschatgpt,文心一言,chatgpt,算法

讯飞星火:

在 HEAP-INCREASE-KEY 的第 5 行的交换操作中,一般需要通过三次赋值来完成。想一想如何利用INSERTION-SORT内循环部分的思想,只用一次赋值就完成这一交换操作?

答:伪代码如下:

while i > 1 and A[PARENT(i)] < key
    A[i] = A[PARENT(i)]
    i = PARENT(i)
end while
A[i] = key

文心一言 VS 讯飞星火 VS chatgpt (67)-- 算法导论6.5 6题,文心一言vschatgpt,文心一言,chatgpt,算法

360智脑:

在 INSERTION-SORT 中,每次迭代都会将当前位置的元素插入到有序序列的正确位置上。因此,可以利用这个性质来减少交换次数。具体来说,在第五行开始时,先将第五行的第一个元素与第六行的第一个元素进行比较,如果前者比后者小,则将它们的位置互换;否则保持不动。这样就完成了一次比较和交换操作。接下来,再将第五行的第二个元素与第六行的第二个元素进行比较…以此类推,直到第五行的最后一个元素与第六行的最后一个元素进行比较并交换位置。这样一来,就不需要进行额外的赋值操作了。

文心一言 VS 讯飞星火 VS chatgpt (67)-- 算法导论6.5 6题,文心一言vschatgpt,文心一言,chatgpt,算法

chatglm:

在 HEAP-INCREASE-KEY 的第 5 行中,我们需要将堆顶元素 (即最大值) 与最后一个元素交换位置。通常情况下,我们需要通过三次赋值来完成这个交换操作:

  1. 将堆顶元素存储在一个临时变量中。
  2. 将最后一个元素赋值给堆顶元素。
  3. 将临时变量中的元素赋值给最后一个元素。
    然而,我们可以利用 INSERTION-SORT 内循环部分的思想,只用一次赋值就完成这个交换操作。具体做法如下:
  4. 从堆顶开始,依次向下遍历堆,将每个元素与它的子节点进行比较,如果子节点比它大,则交换它们。
  5. 在遍历过程中,我们发现最大值一定在堆的末尾,因此我们可以直接将堆顶元素与最后一个元素进行交换,只需要一次赋值操作。
    以下是对应的 Python 代码实现:
def heap_increase_key(heap, key):  
   # 假设当前元素为 i,其子节点为 2*i 和 2*i+1  
   left = 2*i  
   right = 2*i + 1  
   largest = i  
     
   # 依次向下遍历堆,将每个元素与它的子节点进行比较,如果子节点比它大,则交换它们  
   for j in range(left, right):  
       if heap[j] > heap[largest]:  
           largest = j  
     
   # 将堆顶元素与最后一个元素进行交换  
   heap[i], heap[largest] = heap[largest], heap[i]  
     
   # 对子节点进行调整,使它们满足堆性质  
   adjust_child(heap, largest)  
     
def adjust_child(heap, i):  
   # 假设当前元素为 i,它的子节点为 2*i 和 2*i+1  
   left = 2*i  
   right = 2*i + 1  
     
   # 如果左子节点小于右子节点,则交换它们  
   if left < right:  
       heap[i], heap[left] = heap[left], heap[i]  
     
   # 如果左子节点大于右子节点,则不需要交换  
   else:  
       heap[i], heap[right] = heap[right], heap[i]  
     
   # 如果左子节点大于等于右子节点,则不需要交换  
   else:  
       pass  

在这个实现中,我们利用了 INSERTION-SORT 内循环部分的思想,只用一次赋值就完成了交换操作。同时,我们还对子节点进行了调整,使它们满足堆性质。

文心一言 VS 讯飞星火 VS chatgpt (67)-- 算法导论6.5 6题,文心一言vschatgpt,文心一言,chatgpt,算法

文心一言 VS 讯飞星火 VS chatgpt (67)-- 算法导论6.5 6题,文心一言vschatgpt,文心一言,chatgpt,算法

通义千问:

可以利用INSERTION-SORT 中内层循环的思想,在每次迭代中将要交换的两个元素进行比较,如果前一个元素大于后一个元素,则交换它们的位置,然后将指针后移一位。这样在最后一次迭代时,最大的元素就会被置于正确的位置上。具体实现可以参考下面的代码:

void heapIncreaseKey(int* nums, int n, int key) {
    // base case: n == 0
    if (n == 0) return;

    // key is the smallest element in the heap
    int i = 0;
    int newHeapSize = n;
    int largest = nums[0];

    // perform insertion sort on the remaining elements
    for (int j = 1; j < n; j++) {
        int temp = nums[j];
        int compare = key - nums[j];

        // exchange the element with the largest value
        while (compare > 0 && i < newHeapSize) {
            int temp2 = nums[i];
            nums[i] = nums[j];
            nums[j] = temp2;

            // update the size of the heap
            newHeapSize--;
            if (i < newHeapSize) {
                int parent = (i - 1) / 2;
                nums[parent] = nums[i];
            }

            // move the largest element to its correct position
            compare = nums[i] - key;
            i++;
        }
    }

    // update the size of the heap
    n = newHeapSize;

    // exchange the largest element with the root
    nums[0] = nums[n-1];
    nums[n-1] = key;

    // heapify the heap
    heapify(nums, n);
}

文心一言 VS 讯飞星火 VS chatgpt (67)-- 算法导论6.5 6题,文心一言vschatgpt,文心一言,chatgpt,算法

文心一言 VS 讯飞星火 VS chatgpt (67)-- 算法导论6.5 6题,文心一言vschatgpt,文心一言,chatgpt,算法

天工:

在 HEAP-INCREASE-KEY 的第 5 行的交换操作中,一般需要通过三次赋值来完成,因为需要将两个节点的关键字互换,同时需要将它们的父节点和子节点的指针进行相应的调整,以保持树的结构不变。

如果想要只一次赋值就完成这一交换操作,可以利用INSERTION-SORT 内循环部分的思想。具体来说,我们可以将节点插入到已排序的序列中,并且在插入的同时进行交换操作。这样,就可以避免在交换节点的关键字时需要进行多次赋值的问题。

下面是一个示例代码,展示了如何使用INSERTION-SORT的思想来实现一次赋值的交换操作:

def heap_increase_key(heap):
    # 找到要插入的节点
    x = heap[0]
    y = heap[1]
    # 将节点x插入到已排序的序列中
    i = heap.index(x)
    while i > 0 and heap[i] < x:
        heap[i+1] = heap[i]
        i = i - 1
    heap[i+1] = x
    # 将节点y插入到已排序的序列中
    j = heap.index(y)
    while j > 0 and heap[j] < y:
        heap[j+1] = heap[j]
        j = j - 1
    heap[j+1] = y
    # 更新父节点和子节点的指针
    x = heap[1]
    y = heap[0]
    if y < x:
        heap[0], heap[parent[x]] = heap[parent[x]], heap[0]
    elif y > x:
        heap[0], heap[parent[y]] = heap[parent[y]], heap[0]
    if x < y:
        heap[1], heap[parent[y]] = heap[parent[y]], heap[1]
    elif x > y:
        heap[1], heap[parent[x]] = heap[parent[x]], heap[1]
    # 更新父节点的父节点和子节点的指针
    parent[x] = parent[x] - 1 if parent[x] != 0 else 0
    
    parent[y] = parent[y] - 1 if parent[y] != 0 else 0

在这个示例代码中,我们首先找到要插入的节点x和y,然后将它们插入到已排序的序列中。在插入节点时,我们只需要将节点插入到它应该在的位置,并且更新父节点和子节点的指针即可。最后,我们需要更新父节点的父节点和子节点的指针,以保持树的结构不变。

通过这种方法,我们可以在一次赋值的交换操作中完成HEAP-INSERTION-SORT算法的操作,从而提高算法的效率。

文心一言 VS 讯飞星火 VS chatgpt (67)-- 算法导论6.5 6题,文心一言vschatgpt,文心一言,chatgpt,算法

文心一言 VS 讯飞星火 VS chatgpt (67)-- 算法导论6.5 6题,文心一言vschatgpt,文心一言,chatgpt,算法

chatgpt:

对于堆数据结构的 HEAP-INCREASE-KEY 操作,在第5行进行交换操作时,通常需要三次赋值来完成:

5 交换 A[i] 和 A[PARENT(i)]
   temp = A[i]
   A[i] = A[PARENT(i)]
   A[PARENT(i)] = temp

但是可以利用插入排序(INSERTION-SORT)内循环部分的思想,只使用一次赋值来完成这一交换操作。通过以下步骤可以实现:

1.将要交换的两个元素存储在临时变量 temp 和 i 中。

2.将较小的元素赋值给 A[i]。

3.然后通过逐步移动元素的方式,将较大的元素逐个往后挪一个位置。

4.最后将临时变量 temp 的值赋给应该置换的最后一个位置。

以下是使用这种方法进行交换的示例:

5 交换 A[i] 和 A[PARENT(i)]
   temp = A[i]
   A[i] = A[PARENT(i)]

   j = i
   while j > 0 and A[j] > temp:
       A[j] = A[j - 1]
       j = j - 1

   A[j] = temp

通过这种方式,我们只需要一次赋值操作就能完成交换操作,同时保持堆的性质。

文心一言 VS 讯飞星火 VS chatgpt (67)-- 算法导论6.5 6题,文心一言vschatgpt,文心一言,chatgpt,算法

总结

文心一言 VS 讯飞星火 VS chatgpt (67)-- 算法导论6.5 6题,文心一言vschatgpt,文心一言,chatgpt,算法文章来源地址https://www.toymoban.com/news/detail-620658.html

到了这里,关于文心一言 VS 讯飞星火 VS chatgpt (67)-- 算法导论6.5 6题的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 文心一言 VS 讯飞星火 VS chatgpt (27)-- 算法导论5.1 2题

    假设我们有一个伪随机数生成器,可以生成在[0,1)范围内的随机数。那么我们可以使用以下算法实现从一个[a, b]范围内的随机数: 1.首先生成一个随机数r,在[0,1)范围内。 2.检查r是否大于a。如果是,则重复步骤1,直到r小于等于a。 3.计算x = (b-a) * r + a。x就是在[a, b]范围内的随

    2024年02月07日
    浏览(39)
  • 文心一言 VS 讯飞星火 VS chatgpt (28)-- 算法导论5.1 3题

    可以使用贝叶斯公式来计算无偏的结果。假设我们进行了n次试验,其中BIASED-RANDOM以概率p输出1,以概率1-p输出0。设N0为输出0的次数,N1为输出1的次数,则有N0+N1=n。根据贝叶斯公式,可以得到: p(N0, N1|p) = p(N0, N1, p) / p(p) 其中,p(N0, N1, p)表示在n次试验中,N0次试验输出0,N1次

    2024年02月07日
    浏览(40)
  • 文心一言 VS 讯飞星火 VS chatgpt (79)-- 算法导论7.4 4题

    首先,为了证明RANDOMIZED-QUICKSORT的期望运行时间是Ω(nlg n),我们需要证明在最坏的情况下,该算法的运行时间是O(nlg n)。然后,我们需要证明在最坏的情况下,算法的期望运行时间是Ω(nlg n)。 RANDOMIZED-QUICKSORT算法是基于快速排序的一种随机化版本,其中在每次递归分割时,随机

    2024年02月12日
    浏览(51)
  • 文心一言 VS 讯飞星火 VS chatgpt (140)-- 算法导论11.4 5题

    在开放寻址法中,一次不成功的查找探查的期望次数可以由装载因子 a 计算。根据定理11.6,这是 1/(1-a)。对于一次成功的查找,其期望探查次数为 1。 我们需要找到一个 a 值,使得一次不成功查找的探查期望数是成功查找的探查期望数的两倍。因此,我们可以设置以下等式:

    2024年02月03日
    浏览(32)
  • 文心一言 VS 讯飞星火 VS chatgpt (60)-- 算法导论6.4 4题

    文心一言 VS 讯飞星火 VS chatgpt (60)-- 算法导论6.4 4题 要证明在最坏情况下,HEAPSORT 的时间复杂度是 Ω(n log n),我们需要考虑在何种情况下堆排序的时间复杂度最低。 在堆排序中,构建最大堆的时间复杂度为 O(n),这是因为在最坏情况下,堆中每个元素都需要与其他元素进行

    2024年02月16日
    浏览(30)
  • 文心一言 VS 讯飞星火 VS chatgpt (33)-- 算法导论5.2 5题

    假设A的元素构成(1, 2, …, n)上的一个均匀随机排列,我们可以使用指示器随机变量来计算其中逆序对的数目期望。 首先,我们定义一个指示器随机变量X(i, j),表示A[i]和A[j]是否构成一个逆序对。如果A[i] A[j],则X(i, j) = 1,否则X(i, j) = 0。 根据题目描述,A的元素构成(1, 2, …,

    2024年02月09日
    浏览(55)
  • 文心一言 VS 讯飞星火 VS chatgpt (32)-- 算法导论5.2 4题

    我们可以将这个问题转化为求解在指示器随机变量基础上的期望值。 已知有n位顾客。 已知服务生以随机顺序将帽子归还给顾客。 根据指示器随机变量的定义,I(i)表示第i位顾客是否拿到了自己的帽子,其值为1表示拿到,0表示未拿到。 因为服务生归还帽子是随机的,所以每

    2024年02月08日
    浏览(51)
  • 文心一言 VS 讯飞星火 VS chatgpt (123)-- 算法导论10.4 4题

    在计算机科学中,左孩子右兄弟表示法是一种用于表示树状结构的方法,其中每个节点都有两个指针:一个指向其第一个孩子(左孩子),另一个指向其下一个兄弟(右兄弟)。对于一个有根树,我们可以使用一个数组来表示它,其中每个索引对应一个节点,每个节点包含两

    2024年02月08日
    浏览(41)
  • 文心一言 VS 讯飞星火 VS chatgpt (31)-- 算法导论5.2 3题

    为了计算掷n个骰子之和的期望值,我们需要先了解一个重要的概念:指示器随机变量。 指示器随机变量是一种特殊的随机变量,它只有两个取值:0和1。通常用I来表示指示器随机变量,它的取值为1表示事件发生,取值为0表示事件未发生。在掷骰子的例子中,我们可以将指示

    2024年02月09日
    浏览(42)
  • 文心一言 VS 讯飞星火 VS chatgpt (42)-- 算法导论5.4 6题

    这是一个典型的概率问题。首先,我们可以通过简单的计算来理解问题的背景。假设我们有n个球和n个箱子,每个球被投人到箱子里的概率是相等的,即每个箱子有1/n的概率被选中。 现在我们来回答问题。 1.空箱子的数目期望是多少? 我们可以用全概率公式来解决这个问题。

    2024年02月09日
    浏览(38)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包