一,下采样
下采样:池化操作就是经典的下采样,将一张图片缩小,采用不同的方法将像素点合并从而获得更小分辨率的照片就叫做下采样。
二,上采样
上采样:也叫做图像插值上采样就和下采样反过来,将一张照片放大,在像素点之间根据放大倍数,以插值的形式插入像素值从而达到放大图像的目的。
三,欠采样
欠采样与过采样主要是针对不平衡数据集,欠采样:当数据集不平衡时,选择减少数据量过多类别的数量,例如对于一个只用0和1的二分类问题,样本标签1有10000个数据,样本标签0有6000个数据时,为了保持样本数目的平衡,可以选择减少标签1的数据量,这个过程就叫做欠采样。文章来源:https://www.toymoban.com/news/detail-620764.html
四,过采样
过采样:就是对数量较少的类别,扩大它的数量,通过数据增强的方法增家它的数目。(个人理解)文章来源地址https://www.toymoban.com/news/detail-620764.html
到了这里,关于深度学习中的采样:下采样,上采样,欠采样,过采样的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!