深度学习中的采样:下采样,上采样,欠采样,过采样

这篇具有很好参考价值的文章主要介绍了深度学习中的采样:下采样,上采样,欠采样,过采样。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一,下采样

下采样:池化操作就是经典的下采样,将一张图片缩小,采用不同的方法将像素点合并从而获得更小分辨率的照片就叫做下采样。

二,上采样

上采样:也叫做图像插值上采样就和下采样反过来,将一张照片放大,在像素点之间根据放大倍数,以插值的形式插入像素值从而达到放大图像的目的。

三,欠采样

欠采样与过采样主要是针对不平衡数据集,欠采样:当数据集不平衡时,选择减少数据量过多类别的数量,例如对于一个只用0和1的二分类问题,样本标签1有10000个数据,样本标签0有6000个数据时,为了保持样本数目的平衡,可以选择减少标签1的数据量,这个过程就叫做欠采样。

四,过采样

过采样:就是对数量较少的类别,扩大它的数量,通过数据增强的方法增家它的数目。(个人理解)文章来源地址https://www.toymoban.com/news/detail-620764.html

到了这里,关于深度学习中的采样:下采样,上采样,欠采样,过采样的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • 人工智能之深度学习

    第一章 人工智能概述 1.1人工智能的概念和历史 1.2人工智能的发展趋势和挑战 1.3人工智能的伦理和社会问题 第二章 数学基础 1.1线性代数 1.2概率与统计 1.3微积分 第三章 监督学习 1.1无监督学习 1.2半监督学习 1.3增强学习 第四章 深度学习 1.1神经网络的基本原理 1.2深度学习的

    2024年02月09日
    浏览(12)
  • 人工智能、机器学习、深度学习的区别

    人工智能、机器学习、深度学习的区别

    人工智能涵盖范围最广,它包含了机器学习;而机器学习是人工智能的重要研究内容,它又包含了深度学习。 人工智能是一门以计算机科学为基础,融合了数学、神经学、心理学、控制学等多个科目的交叉学科。 人工智能是一门致力于使计算机能够模拟、模仿人类智能的学

    2024年02月08日
    浏览(11)
  • 深度学习:探索人工智能的前沿

    深度学习:探索人工智能的前沿

    人工智能(Artificial Intelligence,简称AI)是一门研究如何使计算机能够执行通常需要人类智能的任务的领域。从早期的符号推理到现代的深度学习,人工智能经历了漫长的发展过程。 20世纪50年代,AI的奠基性工作开始,研究者们试图通过符号推理来模拟人类思维过程。然而,

    2024年01月19日
    浏览(10)
  • 人工智能的深度学习如何入门

    人工智能深度学习近年来成为热门的技术领域,被广泛应用于许多领域,如自然语言处理、图像识别、机器翻译等。学习人工智能深度学习需要具备一定的数学和编程基础,但对于初学者来说,并不需要过于复杂的数学和编程知识。本文将介绍人工智能深度学习的基本概念和

    2024年03月27日
    浏览(10)
  • 一探究竟:人工智能、机器学习、深度学习

    一探究竟:人工智能、机器学习、深度学习

    1.1 人工智能是什么?          1956年在美国Dartmounth 大学举办的一场研讨会中提出了人工智能这一概念。人工智能(Artificial Intelligence),简称AI,是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的

    2024年02月17日
    浏览(13)
  • 机器学习、人工智能、深度学习三者的区别

    机器学习、人工智能、深度学习三者的区别

    目录 1、三者的关系 2、能做些什么 3、阶段性目标 机器学习、人工智能(AI)和深度学习之间有密切的关系,它们可以被看作是一种从不同层面理解和实现智能的方法。 人工智能(AI):人工智能是一门研究如何使计算机能够模仿人类智能的学科。它涵盖了各种技术和方法,

    2024年02月14日
    浏览(10)
  • 12、人工智能、机器学习、深度学习的关系

    12、人工智能、机器学习、深度学习的关系

    很多年前听一个机器学习的公开课,在QA环节,一个同学问了老师一个问题“ 机器学习和深度学习是什么关系 ”? 老师先没回答,而是反问了在场的同学,结果问了2-3个,没有人可以回答的很到位,我当时也是初学一脸懵,会场准备的小礼品也没有拿到。 后来老师解释“机

    2024年02月05日
    浏览(16)
  • 机器学习入门教学——人工智能、机器学习、深度学习

    机器学习入门教学——人工智能、机器学习、深度学习

    1、人工智能 人工智能相当于人类的代理人,我们现在所接触到的人工智能基本上都是弱AI,主要作用是正确解释从外部获得的数据,并对这些数据加以学习和利用,以便灵活的实现特定目标和任务。 例如: 阿尔法狗、智能汽车 简单来说: 人工智能使机器像人类一样进行感

    2024年02月09日
    浏览(39)
  • 人工智能-机器学习-深度学习-分类与算法梳理

    人工智能-机器学习-深度学习-分类与算法梳理

    目前人工智能的概念层出不穷,容易搞混,理清脉络,有益新知识入脑。 为便于梳理,本文只有提纲,且笔者准备仓促,敬请勘误,不甚感激。 符号主义(Symbolists) 基于逻辑推理的智能模拟方法。最喜欢的算法是:规则和决策树。符号主义的代表性成果有启发式程序、专家系

    2024年02月03日
    浏览(15)
  • 深度学习2.神经网络、机器学习、人工智能

    深度学习2.神经网络、机器学习、人工智能

    目录 深度学习、神经网络、机器学习、人工智能的关系 大白话解释深度学习 传统机器学习 VS 深度学习 深度学习的优缺点 4种典型的深度学习算法 卷积神经网络 – CNN 循环神经网络 – RNN 生成对抗网络 – GANs 深度强化学习 – RL 总结 深度学习 深度学习、机器学习、人工智能

    2024年02月11日
    浏览(59)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包