一键转换labelimg格式为COCO格式

这篇具有很好参考价值的文章主要介绍了一键转换labelimg格式为COCO格式。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

将VOC格式的数据转换为COCO格式

1.实现了将目标检测任务中使用的 Pascal VOC 格式标注数据转换为 COCO 格式标注数据,并生成两个 COCO 格式的 JSON 文件,用于训练和验证。
2.通过解析 XML 文件,提取图片信息、类别信息和目标框信息,并将这些数据添加到对应的 COCO 格式数据中。
3.使用随机数种子将数据按照 8:2 的比例划分为训练集和验证集,并将相应的图片拷贝到新的文件夹中。
4.将生成的 COCO 格式数据分别保存为两个 JSON 文件。这样转换后的数据格式更适合用于训练目标检测模型,尤其是对于使用 COCO 格式的深度学习框架。文章来源地址https://www.toymoban.com/news/detail-620949.html

import xml.etree.ElementTree as ET
import os
import json
import collections
import random
import shutil

# 设置随机数种子,可以是任意整数
random_seed = 42

# 设置随机数种子
random.seed(random_seed)


coco_train = dict()
coco_train['images'] = []
coco_train['type'] = 'instances'
coco_train['annotations'] = []
coco_train['categories'] = []

coco_val = dict()
coco_val['images'] = []
coco_val['type'] = 'instances'
coco_val['annotations'] = []
coco_val['categories'] = []

# category_set = dict()
image_set = set()
train_image_id = 1
val_image_id = 200000  # Assuming you have less than 200000 images
category_item_id = 1
annotation_id = 1
category_set = ['huaheng_ng', 'liuwen', 'gubao', 'huaheng_ok', 'qipi']

def split_list_by_ratio(input_list, ratio=0.8):
    # 计算切分的索引位置
    split_index = int(len(input_list) * ratio)
    # 随机打乱列表
    random.shuffle(input_list)
    # 划分为两个列表并返回
    return input_list[:split_index], input_list[split_index:]

def addCatItem(name):
    '''
    增加json格式中的categories部分
    '''
    global category_item_id
    category_item = collections.OrderedDict()
    category_item['supercategory'] = 'none'
    category_item['id'] = category_item_id
    category_item['name'] = name
    coco_train['categories'].append(category_item)
    coco_val['categories'].append(category_item)
    category_item_id += 1


def addImgItem(file_name, size, img_suffixes, is_train):
    global train_image_id  # 声明变量为全局变量
    global val_image_id  # 声明变量为全局变量
    # global image_id
    if file_name is None:
        raise Exception('Could not find filename tag in xml file.')
    if size['width'] is None:
        raise Exception('Could not find width tag in xml file.')
    if size['height'] is None:
        raise Exception('Could not find height tag in xml file.')
    # image_item = dict()    #按照一定的顺序,这里采用collections.OrderedDict()
    image_item = collections.OrderedDict()
    jpg_name = os.path.splitext(file_name)[0] + img_suffixes
    image_item['file_name'] = jpg_name
    image_item['width'] = size['width']
    image_item['height'] = size['height']
    # image_item['id'] = image_id
    # coco['images'].append(image_item)
    if is_train:
        image_item['id'] = train_image_id
        coco_train['images'].append(image_item)
        image_id = train_image_id
        train_image_id += 1
    else:
        image_item['id'] = val_image_id
        coco_val['images'].append(image_item)
        image_id = val_image_id
        val_image_id += 1
    image_set.add(jpg_name)
    image_id = image_id + 1
    return image_id


def addAnnoItem(object_name, image_id, category_id, bbox, is_train):
    global annotation_id
    # annotation_item = dict()
    annotation_item = collections.OrderedDict()
    annotation_item['segmentation'] = []
    seg = []
    # bbox[] is x,y,w,h
    # left_top
    seg.append(bbox[0])
    seg.append(bbox[1])
    # left_bottom
    seg.append(bbox[0])
    seg.append(bbox[1] + bbox[3])
    # right_bottom
    seg.append(bbox[0] + bbox[2])
    seg.append(bbox[1] + bbox[3])
    # right_top
    seg.append(bbox[0] + bbox[2])
    seg.append(bbox[1])
    annotation_item['segmentation'].append(seg)
    annotation_item['area'] = bbox[2] * bbox[3]
    annotation_item['iscrowd'] = 0
    annotation_item['image_id'] = image_id
    annotation_item['bbox'] = bbox
    annotation_item['category_id'] = category_id
    annotation_item['id'] = annotation_id
    annotation_item['ignore'] = 0
    annotation_id += 1
    # coco['annotations'].append(annotation_item)
    if is_train:
        coco_train['annotations'].append(annotation_item)
    else:
        coco_val['annotations'].append(annotation_item)

def parseXmlFiles(xml_path, xmllist, img_suffixes, is_train):
    for f in xmllist:
        if not f.endswith('.xml'):
            continue

        bndbox = dict()
        size = dict()
        current_image_id = None
        current_category_id = None
        file_name = None
        size['width'] = None
        size['height'] = None
        size['depth'] = None

        xml_file = os.path.join(xml_path, f)
        print(xml_file)

        tree = ET.parse(xml_file)
        root = tree.getroot()  # 抓根结点元素

        if root.tag != 'annotation':  # 根节点标签
            raise Exception('pascal voc xml root element should be annotation, rather than {}'.format(root.tag))

        # elem is <folder>, <filename>, <size>, <object>
        for elem in root:
            current_parent = elem.tag
            current_sub = None
            object_name = None

            # elem.tag, elem.attrib,elem.text
            if elem.tag == 'folder':
                continue

            if elem.tag == 'filename':
                file_name = elem.text
                if file_name in category_set:
                    raise Exception('file_name duplicated')

            # add img item only after parse <size> tag
            elif current_image_id is None and file_name is not None and size['width'] is not None:
                if file_name not in image_set:
                    current_image_id = addImgItem(file_name, size, img_suffixes, is_train)  # 图片信息
                    print('add image with {} and {}'.format(file_name, size))
                else:
                    raise Exception('duplicated image: {}'.format(file_name))
                    # subelem is <width>, <height>, <depth>, <name>, <bndbox>
            for subelem in elem:
                bndbox['xmin'] = None
                bndbox['xmax'] = None
                bndbox['ymin'] = None
                bndbox['ymax'] = None

                current_sub = subelem.tag
                if current_parent == 'object' and subelem.tag == 'name':
                    object_name = subelem.text
                    # if object_name not in category_set:
                    #    current_category_id = addCatItem(object_name)
                    # else:
                    # current_category_id = category_set[object_name]
                    current_category_id = category_set.index(object_name) + 1  # index默认从0开始,但是json文件是从1开始,所以+1
                elif current_parent == 'size':
                    if size[subelem.tag] is not None:
                        raise Exception('xml structure broken at size tag.')
                    size[subelem.tag] = int(subelem.text)

                # option is <xmin>, <ymin>, <xmax>, <ymax>, when subelem is <bndbox>
                for option in subelem:
                    if current_sub == 'bndbox':
                        if bndbox[option.tag] is not None:
                            raise Exception('xml structure corrupted at bndbox tag.')
                        bndbox[option.tag] = int(option.text)

                # only after parse the <object> tag
                if bndbox['xmin'] is not None:
                    if object_name is None:
                        raise Exception('xml structure broken at bndbox tag')
                    if current_image_id is None:
                        raise Exception('xml structure broken at bndbox tag')
                    if current_category_id is None:
                        raise Exception('xml structure broken at bndbox tag')
                    bbox = []
                    # x
                    bbox.append(bndbox['xmin'])
                    # y
                    bbox.append(bndbox['ymin'])
                    # w
                    bbox.append(bndbox['xmax'] - bndbox['xmin'])
                    # h
                    bbox.append(bndbox['ymax'] - bndbox['ymin'])
                    print(
                        'add annotation with {},{},{},{}'.format(object_name, current_image_id - 1, current_category_id,
                                                                 bbox))
                    addAnnoItem(object_name, current_image_id - 1, current_category_id, bbox, is_train)



def copy_img(img_path, file_list, img_suffixes, new_folder):
    # global train_image_id  # 将train_image_id声明为全局变量
    # global val_image_id  # 将val_image_id声明为全局变量

    parent_directory = os.path.dirname(img_path)
    dest_folder = os.path.join(parent_directory, new_folder)
    # 创建目标文件夹
    if not os.path.exists(dest_folder):
        os.makedirs(dest_folder)

    for each_file in file_list:
        file_prefix = os.path.splitext(each_file)[0]
        old_img_path = os.path.join(img_path, file_prefix + img_suffixes)
        new_img_path = os.path.join(dest_folder, file_prefix + img_suffixes)
        shutil.copy(old_img_path, new_img_path)
        # print(f'已拷贝图片到{new_img_path}')

        # 更新image_id
        # if new_folder == 'train':
        #     train_image_id += 1
        # else:
        #     val_image_id += 1



def check_image_folder_suffix(folder_path):
    # 获取文件夹中所有文件的后缀名,并将它们放入一个集合(set)中
    file_suffixes = set()
    for file_name in os.listdir(folder_path):
        if os.path.isfile(os.path.join(folder_path, file_name)):
            _, file_suffix = os.path.splitext(file_name)
            file_suffixes.add(file_suffix)

    # 检查集合中后缀名的数量,如果数量为1,则所有图片都是同一个后缀,返回后缀名,否则报错
    assert len(file_suffixes) == 1, "图片文件夹中的后缀名不统一"
    return file_suffixes.pop()



if __name__ == '__main__':
    # 存放img和xml的文件夹
    img_path = 'data/images'
    xml_path = 'data/Annotations'
    # 确保img文件夹中只有一种格式
    img_suffixes = check_image_folder_suffix(img_path)
    # 保存生成的coco格式的json路径
    train_json_file = 'data/annotations_train.json'
    val_json_file = 'data/annotations_val.json'
    # 添加categories部分
    for categoryname in category_set:
        addCatItem(categoryname)
    # 获取所有的XML文件列表
    xmllist = os.listdir(xml_path)
    # 按8:2的随机比例划分为两个列表
    train_list, val_list = split_list_by_ratio(xmllist, ratio=0.8)
    print(train_list)
    print('--------------------')
    print(val_list)
    # 拷贝图片到新的文件夹
    copy_img(img_path, train_list, img_suffixes, 'train')
    copy_img(img_path, val_list, img_suffixes, 'val')
    parseXmlFiles(xml_path, train_list, img_suffixes, True)
    parseXmlFiles(xml_path, val_list, img_suffixes, False)
    json.dump(coco_train, open(train_json_file, 'w'))
    json.dump(coco_val, open(val_json_file, 'w'))

到了这里,关于一键转换labelimg格式为COCO格式的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 使用LabelMe标注目标检测数据集并转换为COCO2017格式

    当你安装好labelme启动后,open dir开始标注,选择Create Rectangle 拖拽画框,然后选择类别(没有就直接输入会自动新建),标注好一幅图后点击next image会弹框提示保存json文件,保存即可。 当你将所有图像标注完后,点击Next Image是没有反应的(因为没有Next图了),此时直接x掉

    2024年02月11日
    浏览(47)
  • segmentation后 mask图片数据转换成coco对应的json格式

    segmentation后 mask二值图片数据转换成coco对应的json格式 转出来之后的json数据中segmentation部分会有一些问题,它不是一个1 * n维度的数据 而是包含了很多段,需要合并 如图: 合并之前: 合并之后,所有的边缘点在一个list中: 最终转好的格式如下图: 合并代码:

    2024年02月12日
    浏览(36)
  • coco数据集标注格式

    以下主要介绍目标检测(目标实例):   COCO数据集中目标实例的json文件整体是以字典的形式来存储内容的。主要包括5个key(info、licenses、images、annotations、categories)。 info这个key对应的值的类型是一个字典; licenses, images, annatations 和 categories这几个key对应的值的类型是一

    2024年02月13日
    浏览(38)
  • 制作COCO格式数据集

    研一上学期要跑一个yoloe,需要用自己的数据集去跑,实验室没有合适的coco格式的数据集,于是需要自己制作数据集,防止以后需要在做的时候忘记,现在把整个操作流程记录下来。 利用代码创建VOC格式文件夹或者自己手动创建。 因为我做的只是检测,不需要其他任务,所

    2023年04月26日
    浏览(41)
  • VOC数据集格式转COCO数据集格式

            项目需要coco格式的数据集但是自己的数据集是VOC格式的该如何转换呢。 VOC格式   coco格式:  因为VOC格式的数据集中图片是放在一个文件下的,所以需要先划分训练集、验证集和测试集的比例,需要改两行文件路径和划分比例 然后 根据划分的三个TXT文件将VOC的xml转

    2024年02月05日
    浏览(33)
  • 目标检测,将voc格式转化为coco格式详细过程

    在目标检测方法研究中,数据集的格式至关重要,为了减小模型的训练时长,需要现在小数据集进行模型研究,从而需要将VOC数据集转化为coco格式。下面一步一步来看: 1. 下载VOC数据集 Pascal VOC,即Pattern Analysis, Statical Modeling and Computational Learning V isual O bject C lasses。详细可参

    2024年02月05日
    浏览(45)
  • COCO2017标注文件格式和YOLO标注文件格式的解析

    声明:本篇博客内容是作者在制作数据集时的一些记录,引用了一些博客的内容,并结合个人理解进行了归纳,引用出处在“参考内容”章节,若有侵权,请联系作者删除。若有纰漏和错误,敬请指正! 1、COCO2017数据集的标注格式及含义 COCO 的全称是Common Objects in COntext,是

    2024年02月08日
    浏览(45)
  • 【记录COCO数据集格式】实例分割的annotations.json的内部格式

    在此记录一下实例分割coco的annotations.json的格式 保存和加载json文件 详见【Python:json常用函数,用于加载和保存json文件】load(), loads(), dump(), dumps()

    2024年02月12日
    浏览(29)
  • 二值mask转polygon/RLE (coco segment格式)

    coco数据集annotation的segmentation并不是二值mask,而是polygon格式, 看一个annotation. segmentation其实是一个二值mask的轮廓点, 如果想把二值mask转成这种格式,需要提取轮廓。 1.Polygon格式 网上找来一张二值mask的图片 提取它的轮廓 这个polygon能不能用呢?是不是和coco的annotation格式一

    2024年02月16日
    浏览(85)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包