bevfusion单显卡训练/测试

这篇具有很好参考价值的文章主要介绍了bevfusion单显卡训练/测试。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

很多人问这个问题,
其实主要就是把分布式计算的stuff改一下就好了
bevfusion采用torchpack这个很难用的包(其实也还好?hhh)来进行分布式计算
我们在单显卡上之需要改这一部分就好文章来源地址https://www.toymoban.com/news/detail-621164.html

  1. tool/train:
import argparse
import copy
import os
import random
import time

import numpy as np
import torch
from mmcv import Config
from torchpack import distributed as dist
from torchpack.environ import auto_set_run_dir, set_run_dir
from torchpack.utils.config import configs

from mmdet3d.apis import train_model
from mmdet3d.datasets import build_dataset
from mmdet3d.models import build_model
from mmdet3d.utils import get_root_logger, convert_sync_batchnorm, recursive_eval

import sys
# sys.argv = ['tools/train.py', 'configs/nuscenes/det/transfusion/secfpn/camera+lidar/swint_v0p075/convfuser.yaml',
#             '--run-dir', 'Res/test_mini'
# ]
# sys.argv = ['tools/train.py', 'configs/once/det/transfusion/secfpn/camera+lidar/swint_v0p075/convfuser.yaml',
#             '--run-dir', 'Res/test_once_mini'
# ]

#python tools/train.py configs/once/det/transfusion/secfpn/camera+lidar/swint_v0p075/convfuser.yaml --run-dir Res/test_once_mini_6cam
def main():
    # dist.init()

    parser = argparse.ArgumentParser()
    parser.add_argument("config", metavar="FILE", help="config file")
    parser.add_argument("--run-dir", metavar="DIR", help="run directory")
    args, opts = parser.parse_known_args()

    configs.load(args.config, recursive=True)
    configs.update(opts)

    cfg = Config(recursive_eval(configs), filename=args.config)

    torch.backends.cudnn.benchmark = cfg.cudnn_benchmark
    torch.cuda.set_device(0)

    if args.run_dir is None:
        args.run_dir = auto_set_run_dir()
    else:
        set_run_dir(args.run_dir)
    cfg.run_dir = args.run_dir

    # dump config
    cfg.dump(os.path.join(cfg.run_dir, "configs.yaml"))

    # init the logger before other steps
    timestamp = time.strftime("%Y%m%d_%H%M%S", time.localtime())
    log_file = os.path.join(cfg.run_dir, f"{timestamp}.log")
    logger = get_root_logger(log_file=log_file)

    # log some basic info
    logger.info(f"Config:\n{cfg.pretty_text}")

    # set random seeds
    if cfg.seed is not None:
        logger.info(
            f"Set random seed to {cfg.seed}, "
            f"deterministic mode: {cfg.deterministic}"
        )
        random.seed(cfg.seed)
        np.random.seed(cfg.seed)
        torch.manual_seed(cfg.seed)
        if cfg.deterministic:
            torch.backends.cudnn.deterministic = True
            torch.backends.cudnn.benchmark = False

    datasets = [build_dataset(cfg.data.train)]

    model = build_model(cfg.model,)
    model.init_weights()
    if cfg.get("sync_bn", None):
        if not isinstance(cfg["sync_bn"], dict):
            cfg["sync_bn"] = dict(exclude=[])
        model = convert_sync_batchnorm(model, exclude=cfg["sync_bn"]["exclude"])

    logger.info(f"Model:\n{model}")
    train_model(
        model,
        datasets,
        cfg,
        distributed=False,
        validate=True,
        timestamp=timestamp,
    )


if __name__ == "__main__":
    main()

  1. mmdet3d/apis/train.py
import torch
from mmcv.parallel import MMDistributedDataParallel,MMDataParallel
from mmcv.runner import (
    DistSamplerSeedHook,
    EpochBasedRunner,
    GradientCumulativeFp16OptimizerHook,
    Fp16OptimizerHook,
    OptimizerHook,
    build_optimizer,
    build_runner,
)
from mmdet3d.runner import CustomEpochBasedRunner

from mmdet3d.utils import get_root_logger
from mmdet.core import DistEvalHook, EvalHook
from mmdet.datasets import build_dataloader, build_dataset, replace_ImageToTensor


def train_model(
    model,
    dataset,
    cfg,
    distributed=False,
    validate=False,
    timestamp=None,
):
    logger = get_root_logger()

    # prepare data loaders
    dataset = dataset if isinstance(dataset, (list, tuple)) else [dataset]

    data_loaders = [
        build_dataloader(
            ds,
            cfg.data.samples_per_gpu,
            cfg.data.workers_per_gpu,
            num_gpus=1,
            dist=distributed,
            seed=cfg.seed,
        )
        for ds in dataset
    ]

    # put model on gpus
    find_unused_parameters = cfg.get("find_unused_parameters", False)
    # Sets the `find_unused_parameters` parameter in
    # torch.nn.parallel.DistributedDataParallel
    if distributed:
        model = MMDistributedDataParallel(
            model.cuda(),
            device_ids=[torch.cuda.current_device()],
            broadcast_buffers=False,
            find_unused_parameters=find_unused_parameters,
        )
    else:
        model = MMDataParallel(
            model.cuda(),
            device_ids=[0],
        )
    # build runner
    optimizer = build_optimizer(model, cfg.optimizer)

    runner = build_runner(
        cfg.runner,
        default_args=dict(
            model=model,
            optimizer=optimizer,
            work_dir=cfg.run_dir,
            logger=logger,
            meta={},
        ),
    )
    
    if hasattr(runner, "set_dataset"):
        runner.set_dataset(dataset)

    # an ugly workaround to make .log and .log.json filenames the same
    runner.timestamp = timestamp

    # fp16 setting
    fp16_cfg = cfg.get("fp16", None)
    if fp16_cfg is not None:
        if "cumulative_iters" in cfg.optimizer_config:
            optimizer_config = GradientCumulativeFp16OptimizerHook(
                **cfg.optimizer_config, **fp16_cfg, distributed=distributed
            )
        else:
            optimizer_config = Fp16OptimizerHook(
                **cfg.optimizer_config, **fp16_cfg, distributed=distributed
            )
    elif distributed and "type" not in cfg.optimizer_config:
        optimizer_config = OptimizerHook(**cfg.optimizer_config)
    else:
        optimizer_config = cfg.optimizer_config

    # register hooks
    runner.register_training_hooks(
        cfg.lr_config,
        optimizer_config,
        cfg.checkpoint_config,
        cfg.log_config,
        cfg.get("momentum_config", None),
        custom_hooks_config=cfg.get('custom_hooks', None)
    )
    if isinstance(runner, EpochBasedRunner):
        runner.register_hook(DistSamplerSeedHook())

    # register eval hooks
    if validate:
        # Support batch_size > 1 in validation
        val_samples_per_gpu = cfg.data.val.pop("samples_per_gpu", 1)
        if val_samples_per_gpu > 1:
            # Replace 'ImageToTensor' to 'DefaultFormatBundle'
            cfg.data.val.pipeline = replace_ImageToTensor(cfg.data.val.pipeline)
        val_dataset = build_dataset(cfg.data.val, dict(test_mode=True))
        val_dataloader = build_dataloader(
            val_dataset,
            samples_per_gpu=val_samples_per_gpu,
            workers_per_gpu=cfg.data.workers_per_gpu,
            dist=distributed,
            shuffle=False,
        )
        eval_cfg = cfg.get("evaluation", {})
        eval_cfg["by_epoch"] = cfg.runner["type"] != "IterBasedRunner"
        eval_hook = DistEvalHook if distributed else EvalHook
        ###主要是这一步
        runner.register_hook(eval_hook(val_dataloader, **eval_cfg))

    if cfg.resume_from:
        runner.resume(cfg.resume_from)
    elif cfg.load_from:
        runner.load_checkpoint(cfg.load_from)
    runner.run(data_loaders, [("train", 1)])

  1. tools/test.py(如果要测试的话)
import argparse
import copy
import os
import warnings

import mmcv
import torch
from torchpack.utils.config import configs
from torchpack import distributed as dist
from mmcv import Config, DictAction
from mmcv.cnn import fuse_conv_bn
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel
from mmcv.runner import get_dist_info, init_dist, load_checkpoint, wrap_fp16_model
from mmdet3d.apis import single_gpu_test
from mmdet3d.datasets import build_dataloader, build_dataset
from mmdet3d.models import build_model
from mmdet.apis import multi_gpu_test, set_random_seed
from mmdet.datasets import replace_ImageToTensor
from mmdet3d.utils import recursive_eval
import sys
import os
import time
# os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
def parse_args():
    parser = argparse.ArgumentParser(description="MMDet test (and eval) a model")
    parser.add_argument("config", help="test config file path")
    parser.add_argument("checkpoint", help="checkpoint file")
    parser.add_argument("--out", help="output result file in pickle format")
    parser.add_argument(
        "--fuse-conv-bn",
        action="store_true",
        help="Whether to fuse conv and bn, this will slightly increase"
        "the inference speed",
    )
    parser.add_argument(
        "--format-only",
        action="store_true",
        help="Format the output results without perform evaluation. It is"
        "useful when you want to format the result to a specific format and "
        "submit it to the test server",
    )
    parser.add_argument(
        "--eval",
        type=str,
        nargs="+",
        help='evaluation metrics, which depends on the dataset, e.g., "bbox",'
        ' "segm", "proposal" for COCO, and "mAP", "recall" for PASCAL VOC',
    )
    parser.add_argument("--show", action="store_true", help="show results")
    parser.add_argument("--show-dir", help="directory where results will be saved")
    parser.add_argument(
        "--gpu-collect",
        action="store_true",
        help="whether to use gpu to collect results.",
    )
    parser.add_argument(
        "--tmpdir",
        help="tmp directory used for collecting results from multiple "
        "workers, available when gpu-collect is not specified",
    )
    parser.add_argument("--seed", type=int, default=0, help="random seed")
    parser.add_argument(
        "--deterministic",
        action="store_true",
        help="whether to set deterministic options for CUDNN backend.",
    )
    parser.add_argument(
        "--cfg-options",
        nargs="+",
        action=DictAction,
        help="override some settings in the used config, the key-value pair "
        "in xxx=yyy format will be merged into config file. If the value to "
        'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
        'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
        "Note that the quotation marks are necessary and that no white space "
        "is allowed.",
    )
    parser.add_argument(
        "--options",
        nargs="+",
        action=DictAction,
        help="custom options for evaluation, the key-value pair in xxx=yyy "
        "format will be kwargs for dataset.evaluate() function (deprecate), "
        "change to --eval-options instead.",
    )
    parser.add_argument(
        "--eval-options",
        nargs="+",
        action=DictAction,
        help="custom options for evaluation, the key-value pair in xxx=yyy "
        "format will be kwargs for dataset.evaluate() function",
    )
    parser.add_argument(
        "--launcher",
        choices=["none", "pytorch", "slurm", "mpi"],
        default="none",
        help="job launcher",
    )
    parser.add_argument("--local_rank", type=int, default=0)
    args = parser.parse_args()
    if "LOCAL_RANK" not in os.environ:
        os.environ["LOCAL_RANK"] = str(args.local_rank)

    if args.options and args.eval_options:
        raise ValueError(
            "--options and --eval-options cannot be both specified, "
            "--options is deprecated in favor of --eval-options"
        )
    if args.options:
        warnings.warn("--options is deprecated in favor of --eval-options")
        args.eval_options = args.options
    return args


def main():
    args = parse_args()
    # dist.init()

    torch.backends.cudnn.benchmark = True
    # torch.cuda.set_device(dist.local_rank())

    assert args.out or args.eval or args.format_only or args.show or args.show_dir, (
        "Please specify at least one operation (save/eval/format/show the "
        'results / save the results) with the argument "--out", "--eval"'
        ', "--format-only", "--show" or "--show-dir"'
    )

    if args.eval and args.format_only:
        raise ValueError("--eval and --format_only cannot be both specified")

    if args.out is not None and not args.out.endswith((".pkl", ".pickle")):
        raise ValueError("The output file must be a pkl file.")

    configs.load(args.config, recursive=True)
    cfg = Config(recursive_eval(configs), filename=args.config)
    print(cfg)

    if args.cfg_options is not None:
        cfg.merge_from_dict(args.cfg_options)
    # set cudnn_benchmark
    if cfg.get("cudnn_benchmark", False):
        torch.backends.cudnn.benchmark = True

    cfg.model.pretrained = None
    # in case the test dataset is concatenated
    samples_per_gpu = 1
    if isinstance(cfg.data.test, dict):
        cfg.data.test.test_mode = True
        samples_per_gpu = cfg.data.test.pop("samples_per_gpu", 1)
        if samples_per_gpu > 1:
            # Replace 'ImageToTensor' to 'DefaultFormatBundle'
            cfg.data.test.pipeline = replace_ImageToTensor(cfg.data.test.pipeline)
    elif isinstance(cfg.data.test, list):
        for ds_cfg in cfg.data.test:
            ds_cfg.test_mode = True
        samples_per_gpu = max(
            [ds_cfg.pop("samples_per_gpu", 1) for ds_cfg in cfg.data.test]
        )
        if samples_per_gpu > 1:
            for ds_cfg in cfg.data.test:
                ds_cfg.pipeline = replace_ImageToTensor(ds_cfg.pipeline)

    # init distributed env first, since logger depends on the dist info.
    distributed = False
    # distributed = True
    # set random seeds
    if args.seed is not None:
        set_random_seed(args.seed, deterministic=args.deterministic)

    # build the dataloader
    dataset = build_dataset(cfg.data.test)
    data_loader = build_dataloader(
        dataset,
        samples_per_gpu=samples_per_gpu,
        workers_per_gpu=cfg.data.workers_per_gpu,
        dist=distributed,
        shuffle=False,
    )

    # build the model and load checkpoint
    cfg.model.train_cfg = None
    model = build_model(cfg.model, test_cfg=cfg.get("test_cfg"))
    fp16_cfg = cfg.get("fp16", None)
    if fp16_cfg is not None:
        wrap_fp16_model(model)
    checkpoint = load_checkpoint(model, args.checkpoint, map_location="cpu")
    if args.fuse_conv_bn:
        model = fuse_conv_bn(model)
    # old versions did not save class info in checkpoints, this walkaround is
    # for backward compatibility
    if "CLASSES" in checkpoint.get("meta", {}):
        model.CLASSES = checkpoint["meta"]["CLASSES"]
    else:
        model.CLASSES = dataset.CLASSES



    
    if not distributed:
        model = MMDataParallel(model, device_ids=[0])
        outputs, input_data= single_gpu_test(model, data_loader)
        # outputs = single_gpu_test(model, data_loader)
    else:
        model = MMDistributedDataParallel(
            model.cuda(),
            device_ids=[torch.cuda.current_device()],
            broadcast_buffers=False,
        )
        outputs = multi_gpu_test(model, data_loader, args.tmpdir, args.gpu_collect)



    rank, _ = get_dist_info()
    if rank == 0:
        if args.out:
            print(f"\nwriting results to {args.out}")
            mmcv.dump(outputs, args.out)
        kwargs = {} if args.eval_options is None else args.eval_options
        if args.format_only:
            dataset.format_results(outputs, **kwargs)
        if args.eval:
            eval_kwargs = cfg.get("evaluation", {}).copy()
            # hard-code way to remove EvalHook args
            for key in [
                "interval",
                "tmpdir",
                "start",
                "gpu_collect",
                "save_best",
                "rule",
            ]:
                eval_kwargs.pop(key, None)
            eval_kwargs.update(dict(metric=args.eval, **kwargs))
            
            input_data_files, tmp_dir = dataset.format_results(input_data, **kwargs)
            # eval_kwargs.updata(dict())
            
            print(dataset.evaluate(outputs,input_data_files = input_data_files, **eval_kwargs))
            # print(dataset.evaluate(outputs,**eval_kwargs))
            tmp_dir.cleanup()

if __name__ == "__main__":
    main()

到了这里,关于bevfusion单显卡训练/测试的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包