使用 Go 语言实现二叉搜索树

这篇具有很好参考价值的文章主要介绍了使用 Go 语言实现二叉搜索树。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

原文链接: 使用 Go 语言实现二叉搜索树

二叉树是一种常见并且非常重要的数据结构,在很多项目中都能看到二叉树的身影。

它有很多变种,比如红黑树,常被用作 std::mapstd::set 的底层实现;B 树和 B+ 树,广泛应用于数据库系统中。

本文要介绍的二叉搜索树用的也很多,比如在开源项目 go-zero 中,就被用来做路由管理。

这篇文章也算是一篇前导文章,介绍一些必备知识,下一篇再来介绍具体在 go-zero 中的应用。

二叉搜索树的特点

最重要的就是它的有序性,在二叉搜索树中,每个节点的值都大于其左子树中的所有节点的值,并且小于其右子树中的所有节点的值。

这意味着通过二叉搜索树可以快速实现对数据的查找和插入。

Go 语言实现

本文主要实现了以下几种方法:

  • Insert(t):插入一个节点
  • Search(t):判断节点是否在树中
  • InOrderTraverse():中序遍历
  • PreOrderTraverse():前序遍历
  • PostOrderTraverse():后序遍历
  • Min():返回最小值
  • Max():返回最大值
  • Remove(t):删除一个节点
  • String():打印一个树形结构

下面分别来介绍,首先定义一个节点:

type Node struct {
    key   int
    value Item
    left  *Node //left
    right *Node //right
}

定义树的结构体,其中包含了锁,是线程安全的:

type ItemBinarySearchTree struct {
    root *Node
    lock sync.RWMutex
}

插入操作:

func (bst *ItemBinarySearchTree) Insert(key int, value Item) {
    bst.lock.Lock()
    defer bst.lock.Unlock()
    n := &Node{key, value, nil, nil}
    if bst.root == nil {
        bst.root = n
    } else {
        insertNode(bst.root, n)
    }
}

// internal function to find the correct place for a node in a tree
func insertNode(node, newNode *Node) {
    if newNode.key < node.key {
        if node.left == nil {
            node.left = newNode
        } else {
            insertNode(node.left, newNode)
        }
    } else {
        if node.right == nil {
            node.right = newNode
        } else {
            insertNode(node.right, newNode)
        }
    }
}

在插入时,需要判断插入节点和当前节点的大小关系,保证搜索树的有序性。

中序遍历:

func (bst *ItemBinarySearchTree) InOrderTraverse(f func(Item)) {
    bst.lock.RLock()
    defer bst.lock.RUnlock()
    inOrderTraverse(bst.root, f)
}

// internal recursive function to traverse in order
func inOrderTraverse(n *Node, f func(Item)) {
    if n != nil {
        inOrderTraverse(n.left, f)
        f(n.value)
        inOrderTraverse(n.right, f)
    }
}

前序遍历:

func (bst *ItemBinarySearchTree) PreOrderTraverse(f func(Item)) {
    bst.lock.Lock()
    defer bst.lock.Unlock()
    preOrderTraverse(bst.root, f)
}

// internal recursive function to traverse pre order
func preOrderTraverse(n *Node, f func(Item)) {
    if n != nil {
        f(n.value)
        preOrderTraverse(n.left, f)
        preOrderTraverse(n.right, f)
    }
}

后序遍历:

func (bst *ItemBinarySearchTree) PostOrderTraverse(f func(Item)) {
    bst.lock.Lock()
    defer bst.lock.Unlock()
    postOrderTraverse(bst.root, f)
}

// internal recursive function to traverse post order
func postOrderTraverse(n *Node, f func(Item)) {
    if n != nil {
        postOrderTraverse(n.left, f)
        postOrderTraverse(n.right, f)
        f(n.value)
    }
}

返回最小值:

func (bst *ItemBinarySearchTree) Min() *Item {
    bst.lock.RLock()
    defer bst.lock.RUnlock()
    n := bst.root
    if n == nil {
        return nil
    }
    for {
        if n.left == nil {
            return &n.value
        }
        n = n.left
    }
}

由于树的有序性,想要得到最小值,一直向左查找就可以了。

返回最大值:

func (bst *ItemBinarySearchTree) Max() *Item {
    bst.lock.RLock()
    defer bst.lock.RUnlock()
    n := bst.root
    if n == nil {
        return nil
    }
    for {
        if n.right == nil {
            return &n.value
        }
        n = n.right
    }
}

查找节点是否存在:

func (bst *ItemBinarySearchTree) Search(key int) bool {
    bst.lock.RLock()
    defer bst.lock.RUnlock()
    return search(bst.root, key)
}

// internal recursive function to search an item in the tree
func search(n *Node, key int) bool {
    if n == nil {
        return false
    }
    if key < n.key {
        return search(n.left, key)
    }
    if key > n.key {
        return search(n.right, key)
    }
    return true
}

删除节点:

func (bst *ItemBinarySearchTree) Remove(key int) {
    bst.lock.Lock()
    defer bst.lock.Unlock()
    remove(bst.root, key)
}

// internal recursive function to remove an item
func remove(node *Node, key int) *Node {
    if node == nil {
        return nil
    }
    if key < node.key {
        node.left = remove(node.left, key)
        return node
    }
    if key > node.key {
        node.right = remove(node.right, key)
        return node
    }
    // key == node.key
    if node.left == nil && node.right == nil {
        node = nil
        return nil
    }
    if node.left == nil {
        node = node.right
        return node
    }
    if node.right == nil {
        node = node.left
        return node
    }
    leftmostrightside := node.right
    for {
        //find smallest value on the right side
        if leftmostrightside != nil && leftmostrightside.left != nil {
            leftmostrightside = leftmostrightside.left
        } else {
            break
        }
    }
    node.key, node.value = leftmostrightside.key, leftmostrightside.value
    node.right = remove(node.right, node.key)
    return node
}

删除操作会复杂一些,分三种情况来考虑:

  1. 如果要删除的节点没有子节点,只需要直接将父节点中,指向要删除的节点指针置为 nil 即可
  2. 如果删除的节点只有一个子节点,只需要更新父节点中,指向要删除节点的指针,让它指向删除节点的子节点即可
  3. 如果删除的节点有两个子节点,我们需要找到这个节点右子树中的最小节点,把它替换到要删除的节点上。然后再删除这个最小节点,因为最小节点肯定没有左子节点,所以可以应用第二种情况删除这个最小节点即可

最后是一个打印树形结构的方法,在实际项目中其实并没有实际作用:

func (bst *ItemBinarySearchTree) String() {
    bst.lock.Lock()
    defer bst.lock.Unlock()
    fmt.Println("------------------------------------------------")
    stringify(bst.root, 0)
    fmt.Println("------------------------------------------------")
}

// internal recursive function to print a tree
func stringify(n *Node, level int) {
    if n != nil {
        format := ""
        for i := 0; i < level; i++ {
            format += "       "
        }
        format += "---[ "
        level++
        stringify(n.left, level)
        fmt.Printf(format+"%d\n", n.key)
        stringify(n.right, level)
    }
}

单元测试

下面是一段测试代码:

func fillTree(bst *ItemBinarySearchTree) {
    bst.Insert(8, "8")
    bst.Insert(4, "4")
    bst.Insert(10, "10")
    bst.Insert(2, "2")
    bst.Insert(6, "6")
    bst.Insert(1, "1")
    bst.Insert(3, "3")
    bst.Insert(5, "5")
    bst.Insert(7, "7")
    bst.Insert(9, "9")
}

func TestInsert(t *testing.T) {
    fillTree(&bst)
    bst.String()

    bst.Insert(11, "11")
    bst.String()
}

// isSameSlice returns true if the 2 slices are identical
func isSameSlice(a, b []string) bool {
    if a == nil && b == nil {
        return true
    }
    if a == nil || b == nil {
        return false
    }
    if len(a) != len(b) {
        return false
    }
    for i := range a {
        if a[i] != b[i] {
            return false
        }
    }
    return true
}

func TestInOrderTraverse(t *testing.T) {
    var result []string
    bst.InOrderTraverse(func(i Item) {
        result = append(result, fmt.Sprintf("%s", i))
    })
    if !isSameSlice(result, []string{"1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11"}) {
        t.Errorf("Traversal order incorrect, got %v", result)
    }
}

func TestPreOrderTraverse(t *testing.T) {
    var result []string
    bst.PreOrderTraverse(func(i Item) {
        result = append(result, fmt.Sprintf("%s", i))
    })
    if !isSameSlice(result, []string{"8", "4", "2", "1", "3", "6", "5", "7", "10", "9", "11"}) {
        t.Errorf("Traversal order incorrect, got %v instead of %v", result, []string{"8", "4", "2", "1", "3", "6", "5", "7", "10", "9", "11"})
    }
}

func TestPostOrderTraverse(t *testing.T) {
    var result []string
    bst.PostOrderTraverse(func(i Item) {
        result = append(result, fmt.Sprintf("%s", i))
    })
    if !isSameSlice(result, []string{"1", "3", "2", "5", "7", "6", "4", "9", "11", "10", "8"}) {
        t.Errorf("Traversal order incorrect, got %v instead of %v", result, []string{"1", "3", "2", "5", "7", "6", "4", "9", "11", "10", "8"})
    }
}

func TestMin(t *testing.T) {
    if fmt.Sprintf("%s", *bst.Min()) != "1" {
        t.Errorf("min should be 1")
    }
}

func TestMax(t *testing.T) {
    if fmt.Sprintf("%s", *bst.Max()) != "11" {
        t.Errorf("max should be 11")
    }
}

func TestSearch(t *testing.T) {
    if !bst.Search(1) || !bst.Search(8) || !bst.Search(11) {
        t.Errorf("search not working")
    }
}

func TestRemove(t *testing.T) {
    bst.Remove(1)
    if fmt.Sprintf("%s", *bst.Min()) != "2" {
        t.Errorf("min should be 2")
    }
}

上文中的全部源码都是经过测试的,可以直接运行,并且已经上传到了 GitHub,需要的同学可以自取。

以上就是本文的全部内容,如果觉得还不错的话欢迎点赞转发关注,感谢支持。


源码地址:

  • https://github.com/yongxinz/go-example

推荐阅读:

  • Go 语言 select 都能做什么?
  • Go 语言 context 都能做什么?

参考文章:文章来源地址https://www.toymoban.com/news/detail-621288.html

  • https://flaviocopes.com/golang-data-structure-binary-search-tree/

到了这里,关于使用 Go 语言实现二叉搜索树的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 使用Go语言实现HTTPS请求

    Go语言,又称Golang,是一种高效、简洁的编程语言。它内置了对HTTP和HTTPS的支持,使得在Go中实现HTTPS请求变得非常简单。下面是一个简单的示例,展示了如何使用Go发送HTTPS请求。 首先,确保你已经安装了Go语言环境。然后,创建一个新的Go文件,比如 https_request.go 。 在 http

    2024年01月18日
    浏览(31)
  • 【Go语言实战】(26) 分布式搜索引擎

    github地址:https://github.com/CocaineCong/tangseng 详细介绍地址:https://cocainecong.github.io/tangseng 这两周我也抽空录成视频发到B站的~ 本来应该10月份就要发了,结果一鸽就鸽到现在hhhh,有兴趣的同学也可留意一下~ gin作为http框架,grpc作为rpc框架,etcd作为服务发现。 总体服务分成

    2024年02月03日
    浏览(21)
  • 【Go语言开发】简单了解一下搜索引擎并用go写一个demo

    这篇文章我们一起来了解一下搜索引擎的原理,以及用go写一个小demo来体验一下搜索引擎。 搜索引擎一般简化为三个步骤 爬虫:爬取数据源,用做搜索数据支持。 索引:根据爬虫爬取到的数据进行索引的建立。 排序:对搜索的结果进行排序。 然后我们再对几个专业名词做

    2024年02月16日
    浏览(33)
  • 【设计模式】使用 go 语言实现简单工厂模式

    最近在看《大话设计模式》,这本书通过对话形式讲解设计模式的使用场景,有兴趣的可以去看一下。 第一篇讲的是 简单工厂模式 ,要求输入两个数和运算符号,得到运行结果。 这个需求不难,难就难在类要怎么设计,才能达到可复用、维护性强、可拓展和灵活性高。 运

    2024年02月05日
    浏览(29)
  • 【数据结构】二叉搜索树——二叉搜索树的概念和介绍、二叉搜索树的简单实现、二叉搜索树的增删查改

      二叉搜索树又称二叉排序树,它或者是一棵空树,或者是具有以下性质的二叉树:   (1)若它的左子树不为空,则左子树上所有节点的值都小于根节点的值   (2)若它的右子树不为空,则右子树上所有节点的值都大于根节点的值   (3)它的左右子树也分别为二叉

    2024年02月09日
    浏览(28)
  • Go语言程序设计-第9章--使用共享变量实现并发

    一个能在串行程序中正确工作的函数。如果这个函数在并发调用时仍然能正确工作,那么这个函数是并发安全的。在这里并发调用是指,在没有额外同步机制的情况下,从两个或者多个 goroutine 同时调用这个函数。如果一个类型的所有可访问方法和操作都是并发安全时,则它

    2024年02月02日
    浏览(43)
  • 二叉搜索树 --- C++实现

    目录 1.二叉搜索树的概念 2.二叉搜索树的操作 3. 二叉树的实现 4.二叉搜索树的应用 5. 二叉树的性能分析 6. 二叉树进阶练习题 二叉搜索树又称二叉排序树 ,它或者是一棵空树,或者是具有以下性质的二叉树: 若它的 左子树 不为空,则左子树上所有节点的值都 小于 根节点的

    2024年02月04日
    浏览(22)
  • Go语言使用net/http实现简单登录验证和文件上传功能

         最近再看Go语言web编程,go语言搭建Web服务器,既可以用go原生的net/http包,也可以用gin/fasthttp/fiber等这些Web框架。本博客使用net/http模块编写了一个简单的登录验证和文件上传的功能,在此做个简单记录。 目录 1.文件目录结构 2.编译运行 3.用户登录  4.文件上传 5.mime/m

    2024年02月11日
    浏览(33)
  • 数据结构之进阶二叉树(二叉搜索树和AVL树、红黑树的实现)超详细解析,附实操图和搜索二叉树的实现过程图

    绪论​ “生命有如铁砧,愈被敲打,愈能发出火花。——伽利略”;本章主要是数据结构 二叉树的进阶知识,若之前没学过二叉树建议看看这篇文章一篇掌握二叉树,本章的知识从浅到深的 对搜索二叉树的使用进行了介绍和对其底层逻辑的实现进行了讲解 ,希望能对你有所

    2024年02月04日
    浏览(34)
  • 二叉搜索树的实现(递归方式)

    目录 实现思路 插入操作 删除操作 完整代码 测试案例 总结 二叉搜索树(Binary Search Tree,BST)是一种常用的数据结构,它具有以下特点: 左子树上所有节点的值均小于它的根节点的值 右子树上所有节点的值均大于它的根节点的值 左右子树也分别为二叉搜索树 在实际应用中

    2024年02月08日
    浏览(23)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包