【图论】BFS中的最短路模型

这篇具有很好参考价值的文章主要介绍了【图论】BFS中的最短路模型。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

算法提高课笔记


BFS可以解决边权为1的最短路问题,下面是相关例题

单源最短路

将源点在开始时存进队列

迷宫问题

原题链接

给定一个 n×n 的二维数组,如下所示:

int maze[5][5] = {

0, 1, 0, 0, 0,

0, 1, 0, 1, 0,

0, 0, 0, 0, 0,

0, 1, 1, 1, 0,

0, 0, 0, 1, 0,

};

它表示一个迷宫,其中的1表示墙壁,0表示可以走的路,只能横着走或竖着走,不能斜着走,要求编程序找出从左上角到右下角的最短路线。

数据保证至少存在一条从左上角走到右下角的路径。

输入格式

第一行包含整数 n。

接下来 n 行,每行包含 n 个整数 0 或 1,表示迷宫。

输出格式

输出从左上角到右下角的最短路线,如果答案不唯一,输出任意一条路径均可。

按顺序,每行输出一个路径中经过的单元格的坐标,左上角坐标为 (0,0),右下角坐标为 (n−1,n−1)。

数据范围

0 ≤ n ≤ 1000

输入样例

5
0 1 0 0 0
0 1 0 1 0
0 0 0 0 0
0 1 1 1 0
0 0 0 1 0

输出样例

0 0
1 0
2 0
2 1
2 2
2 3
2 4
3 4
4 4

题意

一个矩阵,0代表有路1代表没有路,问从左上角走到右下角的最短路径

思路

因为边权均为1,所以利用BFS可以求出从起点到终点的最短路,同时利用一个小技巧从终点往起点走,即可在后续输出路径时正向输出

代码

#include <bits/stdc++.h>

using namespace std;

const int N = 1010, M = N * N;

typedef pair<int, int> PII;
#define ft first
#define sd second

int n;
int g[N][N];
queue<PII> q;
PII pre[N][N];

void bfs(int x, int y)
{
    int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1}; // 代表上下左右四个移动方向

    q.push({x, y});
    memset(pre, -1, sizeof pre);

    while (q.size())
    {
        PII t = q.front();
        q.pop();

        for (int i = 0; i < 4; i ++ )
        {
            int a = t.ft + dx[i], b = t.sd + dy[i];
            if (a < 0 || a >= n || b < 0 || b >= n) continue; // 位置不合法
            if (g[a][b]) continue; // 没路
            if (pre[a][b].ft != -1) continue; // 走过了
            
            q.push({a, b});
            pre[a][b] = t;
        }
    }
}

int main()
{
    ios::sync_with_stdio(false);
    cin.tie(0); cout.tie(0);

    cin >> n;
    for (int i = 0; i < n; i ++ )
        for (int j = 0; j < n; j ++ )
            cin >> g[i][j];

    bfs(n - 1, n - 1);

    PII end(0, 0);

    while (1)
    {
        cout << end.ft << ' ' << end.sd << '\n';
        if (end.ft == n - 1 && end.sd == n - 1) break;
        end = pre[end.ft][end.sd];
    }
}

武士风度的牛

原题链接

农民 John 有很多牛,他想交易其中一头被 Don 称为 The Knight 的牛。

这头牛有一个独一无二的超能力,在农场里像 Knight 一样地跳(就是我们熟悉的象棋中马的走法)。

虽然这头神奇的牛不能跳到树上和石头上,但是它可以在牧场上随意跳,我们把牧场用一个 x,y 的坐标图来表示。

这头神奇的牛像其它牛一样喜欢吃草,给你一张地图,上面标注了 The Knight 的开始位置,树、灌木、石头以及其它障碍的位置,除此之外还有一捆草。

现在你的任务是,确定 The Knight 要想吃到草,至少需要跳多少次。

The Knight 的位置用 K 来标记,障碍的位置用 * 来标记,草的位置用 H 来标记。

这里有一个地图的例子:

             11 | . . . . . . . . . .
             10 | . . . . * . . . . . 
              9 | . . . . . . . . . . 
              8 | . . . * . * . . . . 
              7 | . . . . . . . * . . 
              6 | . . * . . * . . . H 
              5 | * . . . . . . . . . 
              4 | . . . * . . . * . . 
              3 | . K . . . . . . . . 
              2 | . . . * . . . . . * 
              1 | . . * . . . . * . . 
              0 ----------------------
                                    1 
                0 1 2 3 4 5 6 7 8 9 0 

The Knight 可以按照下图中的 A,B,C,D… 这条路径用 5 次跳到草的地方(有可能其它路线的长度也是 5):

             11 | . . . . . . . . . .
             10 | . . . . * . . . . .
              9 | . . . . . . . . . .
              8 | . . . * . * . . . .
              7 | . . . . . . . * . .
              6 | . . * . . * . . . F<
              5 | * . B . . . . . . .
              4 | . . . * C . . * E .
              3 | .>A . . . . D . . .
              2 | . . . * . . . . . *
              1 | . . * . . . . * . .
              0 ----------------------
                                    1
                0 1 2 3 4 5 6 7 8 9 0

注意: 数据保证一定有解。

输入格式

第 1 行: 两个数,表示农场的列数 C 和行数 R。

第 2…R+1 行: 每行一个由 C 个字符组成的字符串,共同描绘出牧场地图。

输出格式

一个整数,表示跳跃的最小次数。

数据范围

1 ≤ R , C ≤ 150

输入样例

10 11
..........
....*.....
..........
...*.*....
.......*..
..*..*...H
*.........
...*...*..
.K........
...*.....*
..*....*..

输出样例

5

题意

图中*代表没有路,.代表有路,求以日字型从K走到H的最短路

思路

dx dy改成向八个不同方向移,其余思路一样,第一次遍历到H时输出即可

代码

#include <bits/stdc++.h>

using namespace std;

const int N = 155, M = N * N;

typedef pair<int, int> PII;
#define ft first
#define sd second

int n, m;
char g[N][N]; // 存图
queue<PII> q;
int dist[N][N]; // 记录距离+判重

int bfs()
{
    int dx[8] = {-2, -1, 1, 2, 2, 1, -1, -2};
    int dy[8] = {1, 2, 2, 1, -1, -2, -2, -1};

    int x, y;
    for (int i = 0; i < n; i ++ )
        for (int j = 0; j < m; j ++ )
            if (g[i][j] == 'K')
                x = i, y = j;

    q.push({x, y});
    memset(dist, -1, sizeof dist);
    dist[x][y] = 0;

    while (q.size())
    {
        auto t = q.front();
        q.pop();

        for (int i = 0; i < 8; i ++ )
        {
            int a = t.ft + dx[i], b = t.sd + dy[i];

            if (a < 0 || a >= n || b < 0 || b >= m) continue; // 位置不合法
            if (g[a][b] == '*') continue; // 没路
            if (dist[a][b] != -1) continue; // 已遍历
            if (g[a][b] == 'H') return dist[t.ft][t.sd] + 1; // 走到终点

            dist[a][b] = dist[t.ft][t.sd] + 1;
            q.push({a, b});
        }
    }
    return -1;
}

int main()
{
    ios::sync_with_stdio(false);
    cin.tie(0); cout.tie(0);

    cin >> m >> n;
    for (int i = 0; i < n; i ++ ) cin >> g[i];

    cout << bfs() << '\n';
}

抓住那头牛

原题链接

农夫知道一头牛的位置,想要抓住它。

农夫和牛都位于数轴上,农夫起始位于点 N,牛位于点 K。

农夫有两种移动方式:

  1. 从 X 移动到 X−1 或 X+1,每次移动花费一分钟
  2. 从 X 移动到 2∗X,每次移动花费一分钟

假设牛没有意识到农夫的行动,站在原地不动。

农夫最少要花多少时间才能抓住牛?

输入格式

共一行,包含两个整数N和K。

输出格式

输出一个整数,表示抓到牛所花费的最少时间。

数据范围

0 ≤ N , K ≤ 105

输入样例

5 17

输出样例

4

题意

要求从N到K,每次只能进行一个操作:向右一步 / 向左一步 / 坐标变为现在的两倍,求最短路

思路

这一题刚开始看第一反应是dp,但后来发现BFS最短路来做也很简单

每次更新所有该轮操作可以到达的位置

无需更新负值,因为只能通过-1到达负值,而从负值到正值只能通过+1,二者相互抵消,不可能是最短路

代码

#include <bits/stdc++.h>

using namespace std;

const int N = 100010;

int n, k;
queue<int> q;
int dist[N];

int bfs()
{
    memset(dist, -1, sizeof dist);
    dist[n] = 0;
    q.push(n);

    while (q.size())
    {
        auto t = q.front();
        q.pop();

        if (t == k) return dist[k]; // 已到终点

        // 更新三个距离
        if (t + 1 < N && dist[t + 1] == -1)
        {
            dist[t + 1] = dist[t] + 1;
            q.push(t + 1);
        }
        if (t - 1 < N && dist[t - 1] == -1)
        {
            dist[t - 1] = dist[t] + 1;
            q.push(t - 1);
        }
        if (t * 2 < N && dist[t * 2] == -1)
        {
            dist[t * 2] = dist[t] + 1;
            q.push(t * 2);
        }
    }
    return -1;
}

int main()
{
    ios::sync_with_stdio(false);
    cin.tie(0); cout.tie(0);

    cin >> n >> k;
    cout << bfs() << '\n';
}

多源最短路

设置虚拟源点,到所有源点的距离都为0,也就是在起始时将每一个起点都存进队列

矩阵距离

原题链接

给定一个 N 行 M 列的 01 矩阵 A,A[i][j] 与 A[k][l] 之间的曼哈顿距离定义为:

dist(A[i][j], A[k][l]) = |i − k| + |j − l|

输出一个 N 行 M 列的整数矩阵 B,其中:

B[i][j] = min~1≤x≤N,1≤y≤M,A[x][y]=1~ dist(A[i][j], A[x][y])

输入格式

第一行两个整数 N,M。

接下来一个 N 行 M 列的 01 矩阵,数字之间没有空格。

输出格式

一个 N 行 M 列的矩阵 B,相邻两个整数之间用一个空格隔开。

数据范围

1 ≤ N, M ≤ 1000

输入样例

3 4
0001
0011
0110

输出样例

3 2 1 0
2 1 0 0
1 0 0 1

题意

给出一个矩阵,求所有0距离最近的1的曼哈顿距离

思路

设置虚拟源点,先将所有的1入队,更新所有0到达1的最短距离输出即可

代码

#include <bits/stdc++.h>

using namespace std;

const int N = 1010;

typedef pair<int, int> PII;
#define ft first
#define sd second 

int n, m;
char g[N][N];
queue<PII> q;
int dist[N][N];

void bfs()
{
    // 所有源点入队
    for (int i = 0; i < n; i ++ )
        for (int j = 0; j < m; j ++ )
            if (g[i][j] == '1')
            {
                dist[i][j] = 0;
                q.push({i, j});
            }
    
    int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};
    while (q.size())
    {
        auto t = q.front();
        q.pop();

        for (int i = 0; i < 4; i ++ )
        {
            int a = t.ft + dx[i], b = t.sd + dy[i];
            if (a < 0 || a >= n || b < 0 || b >= m) continue; // 位置不合法
            if (dist[a][b] != -1) continue; // 已被遍历

            dist[a][b] = dist[t.ft][t.sd] + 1;
            q.push({a, b});
        }
    }
}

int main()
{
    ios::sync_with_stdio(false);
    cin.tie(0); cout.tie(0);

    memset(dist, -1, sizeof dist);
    cin >> n >> m;
    for (int i = 0 ; i < n; i ++ ) cin >> g[i];

    bfs();

    for (int i = 0; i < n; i ++ )
    {
        for (int j = 0; j < m; j ++ )
            cout << dist[i][j] << ' ';
        cout << '\n';
    }
}

双端队列BFS

电路维修

原题链接

达达是来自异世界的魔女,她在漫无目的地四处漂流的时候,遇到了善良的少女翰翰,从而被收留在地球上。

翰翰的家里有一辆飞行车。

有一天飞行车的电路板突然出现了故障,导致无法启动。

电路板的整体结构是一个 R 行 C 列的网格(R,C≤500),如下图所示。

【图论】BFS中的最短路模型,图论,图论,算法,广度优先

每个格点都是电线的接点,每个格子都包含一个电子元件。

电子元件的主要部分是一个可旋转的、连接一条对角线上的两个接点的短电缆。

在旋转之后,它就可以连接另一条对角线的两个接点。

电路板左上角的接点接入直流电源,右下角的接点接入飞行车的发动装置。

达达发现因为某些元件的方向不小心发生了改变,电路板可能处于断路的状态。

她准备通过计算,旋转最少数量的元件,使电源与发动装置通过若干条短缆相连。

不过,电路的规模实在是太大了,达达并不擅长编程,希望你能够帮她解决这个问题。

注意:只能走斜向的线段,水平和竖直线段不能走。

输入格式

输入文件包含多组测试数据。

第一行包含一个整数 T,表示测试数据的数目。

对于每组测试数据,第一行包含正整数 R 和 C,表示电路板的行数和列数。

之后 R 行,每行 C 个字符,字符是"/“和”"中的一个,表示标准件的方向。

输出格式

对于每组测试数据,在单独的一行输出一个正整数,表示所需的最小旋转次数。

如果无论怎样都不能使得电源和发动机之间连通,输出 NO SOLUTION。

数据范围

1 ≤ R , C ≤ 500,
1 ≤ T ≤ 5

输入样例

1
3 5
\\/\\
\\///
/\\\\

输出样例

1

样例解释

样例的输入对应于题目描述中的情况。

只需要按照下面的方式旋转标准件,就可以使得电源和发动机之间连通。

【图论】BFS中的最短路模型,图论,图论,算法,广度优先

题意

从左上角走到右下角,只能走斜线,使斜线方向改变需要消耗1,问消耗最少的路径

思路

首先转换一些题目语言,我们可以理解为,不需要改变斜线方向时边权是0,需要改变斜线方向时边权是1,那这个问题就转换成了边权是0 / 1 的最短路问题,用Dijkstra是可以解决的

那能不能用BFS解决呢?

当然也可以,考虑到BFS中队列的二段性,本题我们使用双端队列,每次将边权为0的边放到队头,边权为1的边放到队尾(感觉有点贪心的思想)

(另外,绝对不会出现一条边未转换时走一次,然后转换了再走一次的情况,因为图中总有一半的点是走不到的

接下来的难点在于图的存储,需要对点和格子分别作出记录文章来源地址https://www.toymoban.com/news/detail-621566.html

代码(加了注释)

#include <bits/stdc++.h>

using namespace std;

const int N = 510, M = N * N;

typedef pair<int, int> PII;
#define ft first
#define sd second 

int n, m;
char g[N][N]; // 存图上的每条边
int dist[N][N]; // 存每个点到起点的距离
bool st[N][N]; // 判重

int bfs()
{
    memset(dist, 0x3f, sizeof dist);
    memset(st, false, sizeof st);
    dist[0][0] = 0;
    deque<PII> q;
    q.push_back({0, 0});

    char cs[] = "\\/\\/"; // 分别表示往左上角、右上角、右下角、左下角走
    int dx[4] = {-1, -1, 1, 1}, dy[4] = {-1, 1, 1, -1}; // 进行这些操作点坐标的改变
    int ix[4] = {-1, -1, 0, 0}, iy[4] = {-1, 0, 0, -1}; // 进行这些操作需要踩过哪些格子

    while (q.size())
    {
        PII t = q.front();
        q.pop_front();

        if (st[t.ft][t.sd]) continue;
        st[t.ft][t.sd] = true;

        for (int i = 0; i < 4; i ++ )
        {
            int a = t.ft + dx[i], b = t.sd + dy[i]; // 点坐标
            if (a < 0 || a > n || b < 0 || b > m) continue; // 位置不合法

            int aa = t.ft + ix[i], bb = t.sd + iy[i]; // 格子坐标
            int d = dist[t.ft][t.sd] + (g[aa][bb] != cs[i]); // 原有距离加上当前格子的边权

            if (d < dist[a][b]) // 如果距离更小就更新
            {
                dist[a][b] = d;
                // 根据边权情况选择加入队头or队尾
                if (g[aa][bb] != cs[i]) q.push_back({a, b});
                else q.push_front({a, b});
            }
        }
    }
    return dist[n][m];
}

int main()
{
    ios::sync_with_stdio(false);
    cin.tie(0); cout.tie(0);

    int t;
    cin >> t;
    while (t -- )
    {
        cin >> n >> m;
        for (int i = 0; i < n; i ++ ) cin >> g[i];

        int t = bfs();

        if (t == 0x3f3f3f3f) cout << "NO SOLUTION\n";
        else cout << t << '\n';
    }
}

到了这里,关于【图论】BFS中的最短路模型的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【算法导论】图论(图的基本概念,图上的深度优先搜索(DFS),广度优先搜索(BFS),最小生成树(MST)及Prim,Kruskal算法)

    图(Graph)是一种包含节点与节点的边的集合,记作G=(V,E),V是节点的集合,E是边的集合。 有向图 一个有向图G=(V,E),E中每个元素是V上的一个二值关系:一条从a出发的连向b的边e可以记作一个 有序 对e = (a,b) 。 无向图 一个无向图G=(V,E),E的每个元素e可以表示V上的一个 无序 对,记

    2024年02月03日
    浏览(52)
  • C#,图论与图算法,图(Graph)广度优先遍历(BFS,Breadth First Search)算法与源代码

    深度优先算法(DFS,Deep First Search)与 宽度优先遍历(BFS,Breadth First Search) 是树、图数据结构的基础性、标准性的遍历算法。 深度优先搜索(DFS)是一种用于搜索图形或树数据结构的算法。该算法从树的根(顶部)节点开始,尽可能沿着给定的分支(路径)向下,然后回溯

    2024年03月23日
    浏览(40)
  • 【动态规划】【广度优先搜索】【状态压缩】847 访问所有节点的最短路径

    视频算法专题 动态规划汇总 广度优先搜索 状态压缩 存在一个由 n 个节点组成的无向连通图,图中的节点按从 0 到 n - 1 编号。 给你一个数组 graph 表示这个图。其中,graph[i] 是一个列表,由所有与节点 i 直接相连的节点组成。 返回能够访问所有节点的最短路径的长度。你可

    2024年01月23日
    浏览(41)
  • 【算法】广度优先遍历 (BFS)

    (1) 广度优先遍历 (Breadth First Search) ,又称 宽度优先遍历 ,是最简便的图的搜索算法之一。 (2)已知图 G = (V, E) 和一个源顶点 start,宽度优先搜索以一种系统的方式探寻 G 的边,从而“发现” start 所能到达的所有顶点,并计算 start 到所有这些顶点的距离(最少边数),

    2024年02月08日
    浏览(39)
  • 图的遍历(搜索)算法(深度优先算法DFS和广度优先算法BFS)

    从图的某个顶点出发访问遍图中所有顶点,且每个顶点仅被访问一次。(连通图与非连通图) 1、访问指定的起始顶点; 2、若当前访问的顶点的邻接顶点有未被访问的,则任选一个访问之;反之,退回到最近访问过的顶点;直到与起始顶点相通的全部顶点都访问完毕; 3、若

    2024年01月17日
    浏览(49)
  • 详解图的最短路径算法(BFS、Dijkstra、Floyd)(附上图解步骤)

    最短路径分为两种: (1)单源路径:从某顶点出发,到其他全部顶点的最短路径 (2)顶点间的最短路径:任意两个顶点之间的最短路径 最短路径的结果主要有两个方面: (1)顶点之间最短路径的长度 (2)从源顶点到目标顶点的路径 只有边权为 1 时才能用BFS求最短路。

    2024年02月05日
    浏览(55)
  • 深度优先搜索(DFS)和广度优先搜索(BFS)两种算法c++

    深度优先搜索(DFS)和广度优先搜索(BFS)是一种用于遍历或搜索树图的一种算法,在这个过程中保证图或数的每个结点被访问且仅被访问一次,再按照每个结点访问的顺序不同分为深搜和广搜。 本文只讨论这两种算法在搜索方面的应用! 深度优先搜索 ( Depth-First-Search,DFS )它 沿

    2024年02月13日
    浏览(51)
  • Python 算法基础篇:深度优先搜索( DFS )和广度优先搜索( BFS )

    深度优先搜索( DFS )和广度优先搜索( BFS )是两种常用的图遍历算法,用于在图中搜索目标节点或遍历图的所有节点。本篇博客将介绍 DFS 和 BFS 算法的基本概念,并通过实例代码演示它们的应用。 😃😄 ❤️ ❤️ ❤️ 深度优先搜索( DFS )是一种用于遍历或搜索图或树

    2024年02月07日
    浏览(67)
  • 【每日一题Day218】LC1091 二进制矩阵中的最短路径 | BFS

    你驾驶出租车行驶在一条有 n 个地点的路上。这 n 个地点从近到远编号为 1 到 n ,你想要从 1 开到 n ,通过接乘客订单盈利。你只能沿着编号递增的方向前进,不能改变方向。 乘客信息用一个下标从 0 开始的二维数组 rides 表示,其中 rides[i] = [starti, endi, tipi] 表示第 i 位乘客

    2024年02月08日
    浏览(53)
  • 【数据结构与算法】搜索算法(深度优先搜索 DFS和广度优先搜索 BFS)以及典型算法例题

    【数据结构与算法】系列文章链接: 【数据结构与算法】递推法和递归法解题(递归递推算法典型例题) 【数据结构与算法】系列文章链接: 【数据结构与算法】C++的STL模板(迭代器iterator、容器vector、队列queue、集合set、映射map)以及算法例题 【数据结构与算法】系列文章链

    2024年04月13日
    浏览(78)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包