Hugging Face中的Accelerate:让训练速度飞起来

这篇具有很好参考价值的文章主要介绍了Hugging Face中的Accelerate:让训练速度飞起来。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


❤️觉得内容不错的话,欢迎点赞收藏加关注😊😊😊,后续会继续输入更多优质内容❤️

👉有问题欢迎大家加关注私戳或者评论(包括但不限于NLP算法相关,linux学习相关,读研读博相关......)👈

Hugging Face中的Accelerate:让训练速度飞起来,自然语言处理,深度学习,人工智能,机器学习

(封面图由文心一格生成)

Hugging Face中的Accelerate:让训练速度飞起来

Hugging Face是人工智能领域中一个非常受欢迎的开源工具库,提供了许多方便的自然语言处理和深度学习模型,如BERT、GPT-3等。其中,Accelerate是Hugging Face中非常有用的一个工具,它可以大幅提高模型的训练速度。本文将详细介绍Accelerate的原理、用法以及代码实现。

1. Accelerate的介绍

Accelerate是Hugging Face中的一个分布式训练工具,可以让用户在不需要更改任何代码的情况下,将单机训练转换为分布式训练。它提供了多种加速策略,如pipeline并行、数据并行等,可以帮助用户更好地利用多台机器的计算资源,大幅提高模型的训练速度。Accelerate还提供了一个方便的API,可以让用户更方便地使用深度学习框架,如PyTorch和TensorFlow。

2. Accelerate的原理讲解

分布式训练

分布式训练是指将一个大型深度学习模型拆分成多个小模型,在不同的计算机上并行训练,最后将结果合并,得到最终的模型。分布式训练可以显著减少模型训练的时间,因为它充分利用了多个计算机的计算资源。同时,由于每个小模型只需要处理部分数据,因此可以使用更大的批次大小,进一步提高训练速度。

加速策略

Accelerate提供了多种加速策略,如pipeline并行、数据并行等。

(1)Pipeline并行

Pipeline并行是指将模型拆分成多个部分,在不同的计算机上并行训练。在每个计算机上,只需要处理模型的一部分,然后将结果传递给下一个计算机。这样可以充分利用多个计算机的计算资源,并且可以使用更大的批次大小,提高训练速度。Pipeline并行的缺点是,由于每个计算机只处理部分数据,因此每个计算机的结果都会有一些误差,最终的结果可能会有一些偏差。

(2)数据并行

数据并行是指将数据拆分成多个部分,在不同的计算机上并行训练。在每个计算机上,都会处理全部的模型,但是每个计算机只处理部分数据。这样可以充分利用多个计算机的计算资源,并且可以使用更大的批次大小,提高训练速度。数据并行的优点是,每个计算机都会处理全部的模型,因此结果更加准确。缺点是,由于每个计算机都需要完整的模型,因此需要更多的计算资源。

加速器

加速器是指用于加速深度学习模型训练的硬件设备,如GPU、TPU等。加速器可以大幅提高模型的训练速度,因为它们可以在更短的时间内完成更多的计算。Accelerate可以自动检测并利用可用的加速器,以进一步提高训练速度。

3. Accelerate的代码实现

下面以PyTorch为例,介绍Accelerate的代码实现。
导入Accelerate和其他必要的库:

from transformers import AutoModelForSequenceClassification, AutoTokenizer
from accelerate import Accelerator
import torch

接着,加载预训练模型和tokenizer:

model_name = "bert-base-uncased"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2)

定义训练数据集和数据加载器:

train_dataset = ...
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=16, shuffle=True)

使用Accelerator进行分布式训练:

accelerator = Accelerator()
model, train_loader = accelerator.prepare(model, train_loader)

optimizer = torch.optim.Adam(model.parameters(), lr=1e-5)
for epoch in range(10):
    for batch in train_loader:
        inputs = tokenizer(batch["text"], padding=True, truncation=True, return_tensors="pt")
        labels = batch["label"]

        optimizer.zero_grad()
        outputs = model(**inputs, labels=labels)
        loss = outputs.loss
        accelerator.backward(loss)
        optimizer.step()

        if accelerator.is_main_process and batch_id % 100 == 0:
            print(f"Epoch {epoch}, Batch {batch_id}, Loss {loss.item()}")

上述代码中,使用Accelerator的prepare方法将模型和数据加载器转换为分布式训练模式。在训练过程中,使用Accelerator的backward方法进行反向传播,并使用Accelerator的is_main_process属性来确定当前进程是否为主进程,以便在需要输出日志时只输出一次。

4. 总结

Accelerate是Hugging Face中非常有用的一个工具,可以大幅提高深度学习模型的训练速度。它提供了多种加速策略和自动检测加速器的功能,可以帮助用户更好地利用多台机器的计算资源,进一步提高训练速度。在代码实现方面,Accelerate提供了方便的API,可以让用户更方便地使用深度学习框架,如PyTorch和TensorFlow。文章来源地址https://www.toymoban.com/news/detail-621995.html


❤️觉得内容不错的话,欢迎点赞收藏加关注😊😊😊,后续会继续输入更多优质内容❤️

👉有问题欢迎大家加关注私戳或者评论(包括但不限于NLP算法相关,linux学习相关,读研读博相关......)👈

到了这里,关于Hugging Face中的Accelerate:让训练速度飞起来的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 使用 LoRA 和 Hugging Face 高效训练大语言模型

    在本文中,我们将展示如何使用 大语言模型低秩适配 (Low-Rank Adaptation of Large Language Models,LoRA) 技术在单 GPU 上微调 110 亿参数的 FLAN-T5 XXL 模型。在此过程中,我们会使用到 Hugging Face 的 Transformers、Accelerate 和 PEFT 库。 通过本文,你会学到: 如何搭建开发环境 如何加载并准备数

    2023年04月13日
    浏览(46)
  • [算法前沿]--028-基于Hugging Face -Transformers的预训练模型微调

    本章节将使用 Hugging Face 生态系统中的库——🤗 Transformers来进行自然语言处理工作(NLP)。 Transformers的历史 以下是 Transformer 模型(简短)历史中的一些参考点: Transformer 架构于 2017 年 6 月推出。原始研究的重点是翻译任务。随后推出了几个有影响力的模型,包括: 2018 年 6

    2024年02月11日
    浏览(56)
  • 如何快速部署本地训练的 Bert-VITS2 语音模型到 Hugging Face

    Hugging Face是一个机器学习(ML)和数据科学平台和社区,帮助用户构建、部署和训练机器学习模型。它提供基础设施,用于在实时应用中演示、运行和部署人工智能(AI)。用户还可以浏览其他用户上传的模型和数据集。Hugging Face通常被称为机器学习界的GitHub,因为它让开发人

    2024年02月01日
    浏览(53)
  • 深入了解 Hugging Face 中的生成工具:Generate方法

    ❤️觉得内容不错的话,欢迎点赞收藏加关注😊😊😊,后续会继续输入更多优质内容❤️ 👉有问题欢迎大家加关注私戳或者评论(包括但不限于NLP算法相关,linux学习相关,读研读博相关......)👈 (封面图由文心一格生成) ## 深入了解 Hugging Face 中的生成工具:Generate方

    2023年04月18日
    浏览(51)
  • 第3章 开源大模型框架概览3.2 PyTorch与Hugging Face3.2.3 PyTorch在大模型中的应用

    在过去的几年里,人工智能技术的发展取得了显著的进展,尤其是自然语言处理(NLP)和计算机视觉等领域。这些技术的核心驱动力是大型神经网络模型,如Transformer、GPT、BERT等。这些模型的训练和部署需要一些高效的深度学习框架来支持。PyTorch是一种流行的深度学习框架,

    2024年01月18日
    浏览(39)
  • Hugging Face 介绍 & 快速搭建模型服务

    你可以在这个网站找到各种类型的模型 Tasks - Hugging Face 以Image To Text这个类别为例,其主要由以下几个部分构成: 类别介绍 模型尝试 模型列表 [huggingface-cli](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli) 隶属于 huggingface_hub 库,不仅可以下载模型、数据,还可

    2024年01月19日
    浏览(51)
  • 微调Hugging Face中图像分类模型

    本文主要针对 Hugging Face 平台中的图像分类模型,在自己数据集上进行微调,预训练模型为 Google 的 vit-base-patch16-224 模型,模型简介页面。 代码运行于kaggle平台上,使用平台免费GPU,型号P100,笔记本地址,欢迎大家 copy edit 。 Github项目地址, Hugging Face 模型微调文档 如果是在

    2024年02月09日
    浏览(42)
  • 官宣 | Hugging Face 中文博客正式发布!

    作者:Tiezhen、Adina、Luke Hugging Face 的中国社区成立已经有五个月之久,我们也非常高兴的看到 Hugging Face 相关的中文内容在各个平台广受好评,我们也注意到,Hugging Face Hub 上有众多国内开发者们的创新和贡献。因此,我们非常高兴的宣布: 我们非常高兴地向你介绍一个新的

    2023年04月21日
    浏览(45)
  • 手把手教你玩Hugging Face

    Hugging Face起初是一家总部位于纽约的聊天机器人初创服务商,他们本来打算创业做聊天机器人,然后在github上开源了一个Transformers库,虽然聊天机器人业务没搞起来,但是他们的这个库在机器学习社区迅速大火起来。目前已经共享了超100,000个预训练模型,10,000个数据集,变成

    2024年02月06日
    浏览(55)
  • Hugging Face Transformers 萌新完全指南

    欢迎阅读《Hugging Face Transformers 萌新完全指南》,本指南面向那些意欲了解有关如何使用开源 ML 的基本知识的人群。我们的目标是揭开 Hugging Face Transformers 的神秘面纱及其工作原理,这么做不是为了把读者变成机器学习从业者,而是让为了让读者更好地理解 transformers 从而能

    2024年04月22日
    浏览(38)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包