深度学习网络模型————Swin-Transformer详细讲解与代码实现

这篇具有很好参考价值的文章主要介绍了深度学习网络模型————Swin-Transformer详细讲解与代码实现。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


论文名称:Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
原论文地址: https://arxiv.org/abs/2103.14030
官方开源代码地址:https://github.com/microsoft/Swin-Transformer

swin模型,深度学习,python,机器学习,transformer,深度学习,人工智能

一、网路模型整体架构

swin模型,深度学习,python,机器学习,transformer,深度学习,人工智能
swin模型,深度学习,python,机器学习,transformer,深度学习,人工智能
swin模型,深度学习,python,机器学习,transformer,深度学习,人工智能
swin模型,深度学习,python,机器学习,transformer,深度学习,人工智能
swin模型,深度学习,python,机器学习,transformer,深度学习,人工智能

swin模型,深度学习,python,机器学习,transformer,深度学习,人工智能

二、Patch Partition模块详解

swin模型,深度学习,python,机器学习,transformer,深度学习,人工智能
swin模型,深度学习,python,机器学习,transformer,深度学习,人工智能
swin模型,深度学习,python,机器学习,transformer,深度学习,人工智能

三、Patch Merging模块

swin模型,深度学习,python,机器学习,transformer,深度学习,人工智能
swin模型,深度学习,python,机器学习,transformer,深度学习,人工智能

四、W-MSA详解

swin模型,深度学习,python,机器学习,transformer,深度学习,人工智能

swin模型,深度学习,python,机器学习,transformer,深度学习,人工智能

五、SW-MSA详解

swin模型,深度学习,python,机器学习,transformer,深度学习,人工智能
swin模型,深度学习,python,机器学习,transformer,深度学习,人工智能
swin模型,深度学习,python,机器学习,transformer,深度学习,人工智能
swin模型,深度学习,python,机器学习,transformer,深度学习,人工智能
swin模型,深度学习,python,机器学习,transformer,深度学习,人工智能
swin模型,深度学习,python,机器学习,transformer,深度学习,人工智能
swin模型,深度学习,python,机器学习,transformer,深度学习,人工智能

masked MSA详解

swin模型,深度学习,python,机器学习,transformer,深度学习,人工智能

六、 Relative Position Bias详解

swin模型,深度学习,python,机器学习,transformer,深度学习,人工智能
swin模型,深度学习,python,机器学习,transformer,深度学习,人工智能

七、模型详细配置参数

swin模型,深度学习,python,机器学习,transformer,深度学习,人工智能文章来源地址https://www.toymoban.com/news/detail-622062.html

八、重要模块代码实现:

1、Patch Partition代码模块:

class PatchEmbed(nn.Module):
    """
    2D Image to Patch Embedding
    split image into non-overlapping patches   即将图片划分成一个个没有重叠的patch
    """
    def __init__(self, patch_size=4, in_c=3, embed_dim=96, norm_layer=None):
        super().__init__()
        patch_size = (patch_size, patch_size)
        self.patch_size = patch_size
        self.in_chans = in_c
        self.embed_dim = embed_dim
        self.proj = nn.Conv2d(in_c, embed_dim, kernel_size=patch_size, stride=patch_size)
        self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()

    def forward(self, x):
        _, _, H, W = x.shape

        # padding
        # 如果输入图片的H,W不是patch_size的整数倍,需要进行padding
        pad_input = (H % self.patch_size[0] != 0) or (W % self.patch_size[1] != 0)
        if pad_input:
            # to pad the last 3 dimensions,
            # (W_left, W_right, H_top,H_bottom, C_front, C_back)
            x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1],   # 表示宽度方向右侧填充数
                          0, self.patch_size[0] - H % self.patch_size[0],   # 表示高度方向底部填充数
                          0, 0))

        # 下采样patch_size倍
        x = self.proj(x)
        _, _, H, W = x.shape
        # flatten: [B, C, H, W] -> [B, C, HW]
        # transpose: [B, C, HW] -> [B, HW, C]
        x = x.flatten(2).transpose(1, 2)
        x = self.norm(x)
        return x, H, W

2、Patch Merging代码模块:

class PatchMerging(nn.Module):
    r""" Patch Merging Layer.
        步长为2,间隔采样
    Args:
        dim (int): Number of input channels.
        norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
    """

    def __init__(self, dim, norm_layer=nn.LayerNorm):
        super().__init__()
        self.dim = dim
        self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
        self.norm = norm_layer(4 * dim)

    def forward(self, x, H, W):
        """
        x: B, H*W, C    即输入x的通道排列顺序
        """
        B, L, C = x.shape
        assert L == H * W, "input feature has wrong size"

        x = x.view(B, H, W, C)

        # padding
        # 如果输入feature map的H,W不是2的整数倍,需要进行padding
        pad_input = (H % 2 == 1) or (W % 2 == 1)
        if pad_input:
            # to pad the last 3 dimensions, starting from the last dimension and moving forward.
            # (C_front, C_back, W_left, W_right, H_top, H_bottom)
            # 注意这里的Tensor通道是[B, H, W, C],所以会和官方文档有些不同
            x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))

        # 以2为间隔进行采样
        x0 = x[:, 0::2, 0::2, :]  # [B, H/2, W/2, C]
        x1 = x[:, 1::2, 0::2, :]  # [B, H/2, W/2, C]
        x2 = x[:, 0::2, 1::2, :]  # [B, H/2, W/2, C]
        x3 = x[:, 1::2, 1::2, :]  # [B, H/2, W/2, C]
        x = torch.cat([x0, x1, x2, x3], -1)  #  ————————>  [B, H/2, W/2, 4*C]   在channael维度上进行拼接
        x = x.view(B, -1, 4 * C)  # [B, H/2*W/2, 4*C]

        x = self.norm(x)
        x = self.reduction(x)  # [B, H/2*W/2, 2*C]

        return x

3、mask掩码生成代码模块:

    def create_mask(self, x, H, W):
        # calculate attention mask for SW-MSA
        # 保证Hp和Wp是window_size的整数倍
        Hp = int(np.ceil(H / self.window_size)) * self.window_size
        Wp = int(np.ceil(W / self.window_size)) * self.window_size
        # 拥有和feature map一样的通道排列顺序,方便后续window_partition
        img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device)  # [1, Hp, Wp, 1]
        h_slices = (slice(0, -self.window_size),
                    slice(-self.window_size, -self.shift_size),
                    slice(-self.shift_size, None))
        w_slices = (slice(0, -self.window_size),
                    slice(-self.window_size, -self.shift_size),
                    slice(-self.shift_size, None))
        cnt = 0
        for h in h_slices:
            for w in w_slices:
                img_mask[:, h, w, :] = cnt
                cnt += 1

        # 将img_mask划分成一个一个窗口
        mask_windows = window_partition(img_mask, self.window_size)  # [nW, Mh, Mw, 1]           # 输出的是按照指定的window_size划分成一个一个窗口的数据
        mask_windows = mask_windows.view(-1, self.window_size * self.window_size)  # [nW, Mh*Mw]
        attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)  # [nW, 1, Mh*Mw] - [nW, Mh*Mw, 1]  使用了广播机制
        # [nW, Mh*Mw, Mh*Mw]
        # 因为需要求得的是自身注意力机制,所以,所以相同的区域使用0表示,;不同的区域不等于0,填入-100,这样,在求得
        attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))   # 即对于不等于0的位置,赋值为-100;否则为0
        return attn_mask

4、stage堆叠部分代码:

class BasicLayer(nn.Module):
    """
    A basic Swin Transformer layer for one stage.

    Args:
        dim (int): Number of input channels.
        depth (int): Number of blocks.
        num_heads (int): Number of attention heads.
        window_size (int): Local window size.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
        drop (float, optional): Dropout rate. Default: 0.0
        attn_drop (float, optional): Attention dropout rate. Default: 0.0
        drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
        norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
        downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
        use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
    """

    def __init__(self, dim, depth, num_heads, window_size,
                 mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0.,
                 drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False):
        super().__init__()
        self.dim = dim
        self.depth = depth
        self.window_size = window_size
        self.use_checkpoint = use_checkpoint
        self.shift_size = window_size // 2  # 表示向右和向下偏移的窗口大小   即窗口大小除以2,然后向下取整

        # build blocks
        self.blocks = nn.ModuleList([
            SwinTransformerBlock(
                dim=dim,
                num_heads=num_heads,
                window_size=window_size,
                shift_size=0 if (i % 2 == 0) else self.shift_size,   # 通过判断shift_size是否等于0,来决定是使用W-MSA与SW-MSA
                mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias,
                drop=drop,
                attn_drop=attn_drop,
                drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
                norm_layer=norm_layer)
            for i in range(depth)])

        # patch merging layer    即:PatchMerging类
        if downsample is not None:
            self.downsample = downsample(dim=dim, norm_layer=norm_layer)
        else:
            self.downsample = None

    def create_mask(self, x, H, W):
        # calculate attention mask for SW-MSA
        # 保证Hp和Wp是window_size的整数倍
        Hp = int(np.ceil(H / self.window_size)) * self.window_size
        Wp = int(np.ceil(W / self.window_size)) * self.window_size
        # 拥有和feature map一样的通道排列顺序,方便后续window_partition
        img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device)  # [1, Hp, Wp, 1]
        h_slices = (slice(0, -self.window_size),
                    slice(-self.window_size, -self.shift_size),
                    slice(-self.shift_size, None))
        w_slices = (slice(0, -self.window_size),
                    slice(-self.window_size, -self.shift_size),
                    slice(-self.shift_size, None))
        cnt = 0
        for h in h_slices:
            for w in w_slices:
                img_mask[:, h, w, :] = cnt
                cnt += 1

        # 将img_mask划分成一个一个窗口
        mask_windows = window_partition(img_mask, self.window_size)  # [nW, Mh, Mw, 1]           # 输出的是按照指定的window_size划分成一个一个窗口的数据
        mask_windows = mask_windows.view(-1, self.window_size * self.window_size)  # [nW, Mh*Mw]
        attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)  # [nW, 1, Mh*Mw] - [nW, Mh*Mw, 1]  使用了广播机制
        # [nW, Mh*Mw, Mh*Mw]
        # 因为需要求得的是自身注意力机制,所以,所以相同的区域使用0表示,;不同的区域不等于0,填入-100,这样,在求得
        attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))   # 即对于不等于0的位置,赋值为-100;否则为0
        return attn_mask

    def forward(self, x, H, W):
        attn_mask = self.create_mask(x, H, W)  # [nW, Mh*Mw, Mh*Mw]   # 制作mask蒙版
        for blk in self.blocks:
            blk.H, blk.W = H, W
            if not torch.jit.is_scripting() and self.use_checkpoint:
                x = checkpoint.checkpoint(blk, x, attn_mask)
            else:
                x = blk(x, attn_mask)
        if self.downsample is not None:
            x = self.downsample(x, H, W)
            H, W = (H + 1) // 2, (W + 1) // 2

        return x, H, W


5、SW-MSA或者W-MSA模块代码:

class SwinTransformerBlock(nn.Module):
    r""" Swin Transformer Block.

    Args:
        dim (int): Number of input channels.
        num_heads (int): Number of attention heads.
        window_size (int): Window size.
        shift_size (int): Shift size for SW-MSA.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
        drop (float, optional): Dropout rate. Default: 0.0
        attn_drop (float, optional): Attention dropout rate. Default: 0.0
        drop_path (float, optional): Stochastic depth rate. Default: 0.0
        act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
        norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
    """

    def __init__(self, dim, num_heads, window_size=7, shift_size=0,
                 mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., drop_path=0.,
                 act_layer=nn.GELU, norm_layer=nn.LayerNorm):
        super().__init__()
        self.dim = dim
        self.num_heads = num_heads
        self.window_size = window_size
        self.shift_size = shift_size
        self.mlp_ratio = mlp_ratio
        assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"

        self.norm1 = norm_layer(dim)    # 先经过层归一化处理

        # WindowAttention即为:SW-MSA或者W-MSA模块
        self.attn = WindowAttention(
            dim, window_size=(self.window_size, self.window_size), num_heads=num_heads, qkv_bias=qkv_bias,
            attn_drop=attn_drop, proj_drop=drop)

        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

    def forward(self, x, attn_mask):
        H, W = self.H, self.W
        B, L, C = x.shape
        assert L == H * W, "input feature has wrong size"

        shortcut = x
        x = self.norm1(x)
        x = x.view(B, H, W, C)

        # pad feature maps to multiples of window size
        # 把feature map给pad到window size的整数倍
        pad_l = pad_t = 0
        pad_r = (self.window_size - W % self.window_size) % self.window_size
        pad_b = (self.window_size - H % self.window_size) % self.window_size
        x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
        _, Hp, Wp, _ = x.shape

        # cyclic shift
        # 判断是进行SW-MSA或者是W-MSA模块
        if self.shift_size > 0:
            # https://blog.csdn.net/ooooocj/article/details/126046858?ops_request_misc=&request_id=&biz_id=102&utm_term=torch.roll()%E7%94%A8%E6%B3%95&utm_medium=distribute.pc_search_result.none-task-blog-2~all~sobaiduweb~default-0-126046858.142^v73^control,201^v4^add_ask,239^v1^control&spm=1018.2226.3001.4187
            shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))    #进行数据移动操作
        else:
            shifted_x = x
            attn_mask = None

        # partition windows
        # 将窗口按照window_size的大小进行划分,得到一个个窗口
        x_windows = window_partition(shifted_x, self.window_size)  # [nW*B, Mh, Mw, C]
        # 将数据进行展平操作
        x_windows = x_windows.view(-1, self.window_size * self.window_size, C)  # [nW*B, Mh*Mw, C]

        # W-MSA/SW-MSA
        """
            # 进行多头自注意力机制操作
        """
        attn_windows = self.attn(x_windows, mask=attn_mask)  # [nW*B, Mh*Mw, C]

        # merge windows
        attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)  # [nW*B, Mh, Mw, C]
        # 将多窗口拼接回大的featureMap
        shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp)  # [B, H', W', C]

        # reverse cyclic shift
        # 将移位的数据进行还原
        if self.shift_size > 0:
            x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
        else:
            x = shifted_x
        # 如果进行了padding操作,需要移出掉相应的pad
        if pad_r > 0 or pad_b > 0:
            # 把前面pad的数据移除掉
            x = x[:, :H, :W, :].contiguous()

        x = x.view(B, H * W, C)

        # FFN
        x = shortcut + self.drop_path(x)
        x = x + self.drop_path(self.mlp(self.norm2(x)))

        return x

九:模型整体流程代码实现:

""" Swin Transformer
A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows`
    - https://arxiv.org/pdf/2103.14030

Code/weights from https://github.com/microsoft/Swin-Transformer

"""

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
import numpy as np
from typing import Optional


def drop_path_f(x, drop_prob: float = 0., training: bool = False):
    """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).

    This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
    the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
    See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
    changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
    'survival rate' as the argument.

    """
    if drop_prob == 0. or not training:
        return x
    keep_prob = 1 - drop_prob
    shape = (x.shape[0],) + (1,) * (x.ndim - 1)  # work with diff dim tensors, not just 2D ConvNets
    random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
    random_tensor.floor_()  # binarize
    output = x.div(keep_prob) * random_tensor
    return output


class DropPath(nn.Module):
    """Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks).
    """
    def __init__(self, drop_prob=None):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

    def forward(self, x):
        return drop_path_f(x, self.drop_prob, self.training)

"""
    将窗口按照window_size的大小进行划分,得到一个个窗口
"""
def window_partition(x, window_size: int):
    """
    将feature map按照window_size划分成一个个没有重叠的window
    Args:
        x: (B, H, W, C)
        window_size (int): window size(M)

    Returns:
        windows: (num_windows*B, window_size, window_size, C)
    """
    B, H, W, C = x.shape
    x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
    # permute: [B, H//Mh, Mh, W//Mw, Mw, C] -> [B, H//Mh, W//Mh, Mw, Mw, C]
    # view: [B, H//Mh, W//Mw, Mh, Mw, C] -> [B*num_windows, Mh, Mw, C]
    windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)   # 输出的是按照指定的window_size划分成一个一个窗口的数据
    return windows


def window_reverse(windows, window_size: int, H: int, W: int):
    """
    将一个个window还原成一个feature map
    Args:
        windows: (num_windows*B, window_size, window_size, C)
        window_size (int): Window size(M)
        H (int): Height of image
        W (int): Width of image

    Returns:
        x: (B, H, W, C)
    """
    B = int(windows.shape[0] / (H * W / window_size / window_size))
    # view: [B*num_windows, Mh, Mw, C] -> [B, H//Mh, W//Mw, Mh, Mw, C]
    x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
    # permute: [B, H//Mh, W//Mw, Mh, Mw, C] -> [B, H//Mh, Mh, W//Mw, Mw, C]
    # view: [B, H//Mh, Mh, W//Mw, Mw, C] -> [B, H, W, C]
    x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
    return x


class PatchEmbed(nn.Module):
    """
    2D Image to Patch Embedding
    split image into non-overlapping patches   即将图片划分成一个个没有重叠的patch
    """
    def __init__(self, patch_size=4, in_c=3, embed_dim=96, norm_layer=None):
        super().__init__()
        patch_size = (patch_size, patch_size)
        self.patch_size = patch_size
        self.in_chans = in_c
        self.embed_dim = embed_dim
        self.proj = nn.Conv2d(in_c, embed_dim, kernel_size=patch_size, stride=patch_size)
        self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()

    def forward(self, x):
        _, _, H, W = x.shape

        # padding
        # 如果输入图片的H,W不是patch_size的整数倍,需要进行padding
        pad_input = (H % self.patch_size[0] != 0) or (W % self.patch_size[1] != 0)
        if pad_input:
            # to pad the last 3 dimensions,
            # (W_left, W_right, H_top,H_bottom, C_front, C_back)
            x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1],   # 表示宽度方向右侧填充数
                          0, self.patch_size[0] - H % self.patch_size[0],   # 表示高度方向底部填充数
                          0, 0))

        # 下采样patch_size倍
        x = self.proj(x)
        _, _, H, W = x.shape
        # flatten: [B, C, H, W] -> [B, C, HW]
        # transpose: [B, C, HW] -> [B, HW, C]
        x = x.flatten(2).transpose(1, 2)
        x = self.norm(x)
        return x, H, W


class PatchMerging(nn.Module):
    r""" Patch Merging Layer.
        步长为2,间隔采样
    Args:
        dim (int): Number of input channels.
        norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
    """

    def __init__(self, dim, norm_layer=nn.LayerNorm):
        super().__init__()
        self.dim = dim
        self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
        self.norm = norm_layer(4 * dim)

    def forward(self, x, H, W):
        """
        x: B, H*W, C    即输入x的通道排列顺序
        """
        B, L, C = x.shape
        assert L == H * W, "input feature has wrong size"

        x = x.view(B, H, W, C)

        # padding
        # 如果输入feature map的H,W不是2的整数倍,需要进行padding
        pad_input = (H % 2 == 1) or (W % 2 == 1)
        if pad_input:
            # to pad the last 3 dimensions, starting from the last dimension and moving forward.
            # (C_front, C_back, W_left, W_right, H_top, H_bottom)
            # 注意这里的Tensor通道是[B, H, W, C],所以会和官方文档有些不同
            x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))

        # 以2为间隔进行采样
        x0 = x[:, 0::2, 0::2, :]  # [B, H/2, W/2, C]
        x1 = x[:, 1::2, 0::2, :]  # [B, H/2, W/2, C]
        x2 = x[:, 0::2, 1::2, :]  # [B, H/2, W/2, C]
        x3 = x[:, 1::2, 1::2, :]  # [B, H/2, W/2, C]
        x = torch.cat([x0, x1, x2, x3], -1)  #  ————————>  [B, H/2, W/2, 4*C]   在channael维度上进行拼接
        x = x.view(B, -1, 4 * C)  # [B, H/2*W/2, 4*C]

        x = self.norm(x)
        x = self.reduction(x)  # [B, H/2*W/2, 2*C]

        return x

"""
MLP模块
"""
class Mlp(nn.Module):
    """ MLP as used in Vision Transformer, MLP-Mixer and related networks
    """
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features

        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.drop1 = nn.Dropout(drop)
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop2 = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop1(x)
        x = self.fc2(x)
        x = self.drop2(x)
        return x

"""
WindowAttention即为:SW-MSA或者W-MSA模块
"""
class WindowAttention(nn.Module):
    r""" Window based multi-head self attention (W-MSA) module with relative position bias.
    It supports both of shifted and non-shifted window.

    Args:
        dim (int): Number of input channels.
        window_size (tuple[int]): The height and width of the window.
        num_heads (int): Number of attention heads.
        qkv_bias (bool, optional):  If True, add a learnable bias to query, key, value. Default: True
        attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
        proj_drop (float, optional): Dropout ratio of output. Default: 0.0
    """

    def __init__(self, dim, window_size, num_heads, qkv_bias=True, attn_drop=0., proj_drop=0.):

        super().__init__()
        self.dim = dim
        self.window_size = window_size  # [Mh, Mw]
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = head_dim ** -0.5

        # define a parameter table of relative position bias
        # 创建偏置bias项矩阵
        self.relative_position_bias_table = nn.Parameter(
            torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads))  # [2*Mh-1 * 2*Mw-1, nH]    其元素的个数===>>[(2*Mh-1) * (2*Mw-1)]

        # get pair-wise relative position index for each token inside the window
        coords_h = torch.arange(self.window_size[0])  # 如果此处的self.window_size[0]2的话,则生成的coords_h为[0,1]
        coords_w = torch.arange(self.window_size[1])  # 同理得
        coords = torch.stack(torch.meshgrid([coords_h, coords_w]))  # [2, Mh, Mw]
        coords_flatten = torch.flatten(coords, 1)  # [2, Mh*Mw]
        # [2, Mh*Mw, 1] - [2, 1, Mh*Mw]
        relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]  # [2, Mh*Mw, Mh*Mw]
        relative_coords = relative_coords.permute(1, 2, 0).contiguous()  # [Mh*Mw, Mh*Mw, 2]
        relative_coords[:, :, 0] += self.window_size[0] - 1  # shift to start from 0  行标+(M-1)
        relative_coords[:, :, 1] += self.window_size[1] - 1     # 列表标+(M-1)
        relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
        relative_position_index = relative_coords.sum(-1)  # [Mh*Mw, Mh*Mw]
        self.register_buffer("relative_position_index", relative_position_index)   # 将relative_position_index放入到模型的缓存当中

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

        nn.init.trunc_normal_(self.relative_position_bias_table, std=.02)
        self.softmax = nn.Softmax(dim=-1)

    def forward(self, x, mask: Optional[torch.Tensor] = None):
        """
        Args:
            x: input features with shape of (num_windows*B, Mh*Mw, C)
            mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
        """
        # [batch_size*num_windows, Mh*Mw, total_embed_dim]
        B_, N, C = x.shape
        # qkv(): -> [batch_size*num_windows, Mh*Mw, 3 * total_embed_dim]
        # reshape: -> [batch_size*num_windows, Mh*Mw, 3, num_heads, embed_dim_per_head]
        # permute: -> [3, batch_size*num_windows, num_heads, Mh*Mw, embed_dim_per_head]
        qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        # [batch_size*num_windows, num_heads, Mh*Mw, embed_dim_per_head]
        q, k, v = qkv.unbind(0)  # make torchscript happy (cannot use tensor as tuple)

        # transpose: -> [batch_size*num_windows, num_heads, embed_dim_per_head, Mh*Mw]
        # @: multiply -> [batch_size*num_windows, num_heads, Mh*Mw, Mh*Mw]
        q = q * self.scale
        attn = (q @ k.transpose(-2, -1))

        # relative_position_bias_table.view: [Mh*Mw*Mh*Mw,nH] -> [Mh*Mw,Mh*Mw,nH]
        relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
            self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1)
        relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()  # [nH, Mh*Mw, Mh*Mw]
        attn = attn + relative_position_bias.unsqueeze(0)

        # 进行mask,相同区域使用0表示;不同区域使用-100表示
        if mask is not None:
            # mask: [nW, Mh*Mw, Mh*Mw]
            nW = mask.shape[0]  # num_windows
            # attn.view: [batch_size, num_windows, num_heads, Mh*Mw, Mh*Mw]
            # mask.unsqueeze: [1, nW, 1, Mh*Mw, Mh*Mw]
            attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
            attn = attn.view(-1, self.num_heads, N, N)
            attn = self.softmax(attn)
        else:
            attn = self.softmax(attn)

        attn = self.attn_drop(attn)

        # @: multiply -> [batch_size*num_windows, num_heads, Mh*Mw, embed_dim_per_head]
        # transpose: -> [batch_size*num_windows, Mh*Mw, num_heads, embed_dim_per_head]
        # reshape: -> [batch_size*num_windows, Mh*Mw, total_embed_dim]
        x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x

"""
    SwinTransformerBlock
"""
class SwinTransformerBlock(nn.Module):
    r""" Swin Transformer Block.

    Args:
        dim (int): Number of input channels.
        num_heads (int): Number of attention heads.
        window_size (int): Window size.
        shift_size (int): Shift size for SW-MSA.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
        drop (float, optional): Dropout rate. Default: 0.0
        attn_drop (float, optional): Attention dropout rate. Default: 0.0
        drop_path (float, optional): Stochastic depth rate. Default: 0.0
        act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
        norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
    """

    def __init__(self, dim, num_heads, window_size=7, shift_size=0,
                 mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., drop_path=0.,
                 act_layer=nn.GELU, norm_layer=nn.LayerNorm):
        super().__init__()
        self.dim = dim
        self.num_heads = num_heads
        self.window_size = window_size
        self.shift_size = shift_size
        self.mlp_ratio = mlp_ratio
        assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"

        self.norm1 = norm_layer(dim)    # 先经过层归一化处理

        # WindowAttention即为:SW-MSA或者W-MSA模块
        self.attn = WindowAttention(
            dim, window_size=(self.window_size, self.window_size), num_heads=num_heads, qkv_bias=qkv_bias,
            attn_drop=attn_drop, proj_drop=drop)

        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

    def forward(self, x, attn_mask):
        H, W = self.H, self.W
        B, L, C = x.shape
        assert L == H * W, "input feature has wrong size"

        shortcut = x
        x = self.norm1(x)
        x = x.view(B, H, W, C)

        # pad feature maps to multiples of window size
        # 把feature map给pad到window size的整数倍
        pad_l = pad_t = 0
        pad_r = (self.window_size - W % self.window_size) % self.window_size
        pad_b = (self.window_size - H % self.window_size) % self.window_size
        x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
        _, Hp, Wp, _ = x.shape

        # cyclic shift
        # 判断是进行SW-MSA或者是W-MSA模块
        if self.shift_size > 0:
            # https://blog.csdn.net/ooooocj/article/details/126046858?ops_request_misc=&request_id=&biz_id=102&utm_term=torch.roll()%E7%94%A8%E6%B3%95&utm_medium=distribute.pc_search_result.none-task-blog-2~all~sobaiduweb~default-0-126046858.142^v73^control,201^v4^add_ask,239^v1^control&spm=1018.2226.3001.4187
            shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))    #进行数据移动操作
        else:
            shifted_x = x
            attn_mask = None

        # partition windows
        # 将窗口按照window_size的大小进行划分,得到一个个窗口
        x_windows = window_partition(shifted_x, self.window_size)  # [nW*B, Mh, Mw, C]
        # 将数据进行展平操作
        x_windows = x_windows.view(-1, self.window_size * self.window_size, C)  # [nW*B, Mh*Mw, C]

        # W-MSA/SW-MSA
        """
            # 进行多头自注意力机制操作
        """
        attn_windows = self.attn(x_windows, mask=attn_mask)  # [nW*B, Mh*Mw, C]

        # merge windows
        attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)  # [nW*B, Mh, Mw, C]
        # 将多窗口拼接回大的featureMap
        shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp)  # [B, H', W', C]

        # reverse cyclic shift
        # 将移位的数据进行还原
        if self.shift_size > 0:
            x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
        else:
            x = shifted_x
        # 如果进行了padding操作,需要移出掉相应的pad
        if pad_r > 0 or pad_b > 0:
            # 把前面pad的数据移除掉
            x = x[:, :H, :W, :].contiguous()

        x = x.view(B, H * W, C)

        # FFN
        x = shortcut + self.drop_path(x)
        x = x + self.drop_path(self.mlp(self.norm2(x)))

        return x


class BasicLayer(nn.Module):
    """
    A basic Swin Transformer layer for one stage.

    Args:
        dim (int): Number of input channels.
        depth (int): Number of blocks.
        num_heads (int): Number of attention heads.
        window_size (int): Local window size.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
        drop (float, optional): Dropout rate. Default: 0.0
        attn_drop (float, optional): Attention dropout rate. Default: 0.0
        drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
        norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
        downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
        use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
    """

    def __init__(self, dim, depth, num_heads, window_size,
                 mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0.,
                 drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False):
        super().__init__()
        self.dim = dim
        self.depth = depth
        self.window_size = window_size
        self.use_checkpoint = use_checkpoint
        self.shift_size = window_size // 2  # 表示向右和向下偏移的窗口大小   即窗口大小除以2,然后向下取整

        # build blocks
        self.blocks = nn.ModuleList([
            SwinTransformerBlock(
                dim=dim,
                num_heads=num_heads,
                window_size=window_size,
                shift_size=0 if (i % 2 == 0) else self.shift_size,   # 通过判断shift_size是否等于0,来决定是使用W-MSA与SW-MSA
                mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias,
                drop=drop,
                attn_drop=attn_drop,
                drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
                norm_layer=norm_layer)
            for i in range(depth)])

        # patch merging layer    即:PatchMerging类
        if downsample is not None:
            self.downsample = downsample(dim=dim, norm_layer=norm_layer)
        else:
            self.downsample = None

    def create_mask(self, x, H, W):
        # calculate attention mask for SW-MSA
        # 保证Hp和Wp是window_size的整数倍
        Hp = int(np.ceil(H / self.window_size)) * self.window_size
        Wp = int(np.ceil(W / self.window_size)) * self.window_size
        # 拥有和feature map一样的通道排列顺序,方便后续window_partition
        img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device)  # [1, Hp, Wp, 1]
        h_slices = (slice(0, -self.window_size),
                    slice(-self.window_size, -self.shift_size),
                    slice(-self.shift_size, None))
        w_slices = (slice(0, -self.window_size),
                    slice(-self.window_size, -self.shift_size),
                    slice(-self.shift_size, None))
        cnt = 0
        for h in h_slices:
            for w in w_slices:
                img_mask[:, h, w, :] = cnt
                cnt += 1

        # 将img_mask划分成一个一个窗口
        mask_windows = window_partition(img_mask, self.window_size)  # [nW, Mh, Mw, 1]           # 输出的是按照指定的window_size划分成一个一个窗口的数据
        mask_windows = mask_windows.view(-1, self.window_size * self.window_size)  # [nW, Mh*Mw]
        attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)  # [nW, 1, Mh*Mw] - [nW, Mh*Mw, 1]  使用了广播机制
        # [nW, Mh*Mw, Mh*Mw]
        # 因为需要求得的是自身注意力机制,所以,所以相同的区域使用0表示,;不同的区域不等于0,填入-100,这样,在求得
        attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))   # 即对于不等于0的位置,赋值为-100;否则为0
        return attn_mask

    def forward(self, x, H, W):
        attn_mask = self.create_mask(x, H, W)  # [nW, Mh*Mw, Mh*Mw]   # 制作mask蒙版
        for blk in self.blocks:
            blk.H, blk.W = H, W
            if not torch.jit.is_scripting() and self.use_checkpoint:
                x = checkpoint.checkpoint(blk, x, attn_mask)
            else:
                x = blk(x, attn_mask)
        if self.downsample is not None:
            x = self.downsample(x, H, W)
            H, W = (H + 1) // 2, (W + 1) // 2

        return x, H, W


class SwinTransformer(nn.Module):
    r""" Swin Transformer
        A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows`  -
          https://arxiv.org/pdf/2103.14030

    Args:
        patch_size (int | tuple(int)): Patch size. Default: 4   表示通过Patch Partition层后,下采样几倍
        in_chans (int): Number of input image channels. Default: 3
        num_classes (int): Number of classes for classification head. Default: 1000
        embed_dim (int): Patch embedding dimension. Default: 96
        depths (tuple(int)): Depth of each Swin Transformer layer.
        num_heads (tuple(int)): Number of attention heads in different layers.
        window_size (int): Window size. Default: 7
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
        qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
        drop_rate (float): Dropout rate. Default: 0
        attn_drop_rate (float): Attention dropout rate. Default: 0
        drop_path_rate (float): Stochastic depth rate. Default: 0.1
        norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
        patch_norm (bool): If True, add normalization after patch embedding. Default: True
        use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
    """

    def __init__(self, patch_size=4,  # 表示通过Patch Partition层后,下采样几倍
                 in_chans=3,           # 输入图像通道
                 num_classes=1000,     # 类别数
                 embed_dim=96,         # Patch partition层后的LinearEmbedding层映射后的维度,之后的几层都是该数的整数倍  分别是 C、2C、4C、8C
                 depths=(2, 2, 6, 2),  # 表示每一个Stage模块内,Swin Transformer Block重复的次数
                 num_heads=(3, 6, 12, 24),  # 表示每一个Stage模块内,Swin Transformer Block中采用的Multi-Head self-Attention的head的个数
                 window_size=7,         # 表示W-MSA与SW-MSA所采用的window的大小
                 mlp_ratio=4.,          # 表示MLP模块中,第一个全连接层增大的倍数
                 qkv_bias=True,
                 drop_rate=0.,          # 对应的PatchEmbed层后面的
                 attn_drop_rate=0.,     # 对应于Multi-Head self-Attention模块中对应的dropRate
                 drop_path_rate=0.1,    # 对应于每一个Swin-Transformer模块中采用的DropRate   其是慢慢的递增的,从0增长到drop_path_rate
                 norm_layer=nn.LayerNorm,
                 patch_norm=True,
                 use_checkpoint=False, **kwargs):
        super().__init__()

        self.num_classes = num_classes
        self.num_layers = len(depths)  # depths:表示重复的Swin Transoformer Block模块的次数  表示每一个Stage模块内,Swin Transformer Block重复的次数
        self.embed_dim = embed_dim
        self.patch_norm = patch_norm
        # stage4输出特征矩阵的channels
        self.num_features = int(embed_dim * 2 ** (self.num_layers - 1))
        self.mlp_ratio = mlp_ratio

        # split image into non-overlapping patches   即将图片划分成一个个没有重叠的patch
        self.patch_embed = PatchEmbed(
            patch_size=patch_size, in_c=in_chans, embed_dim=embed_dim,
            norm_layer=norm_layer if self.patch_norm else None)
        self.pos_drop = nn.Dropout(p=drop_rate)   # PatchEmbed层后面的Dropout层

        # stochastic depth
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]  # stochastic depth decay rule

        # build layers
        self.layers = nn.ModuleList()
        for i_layer in range(self.num_layers):
            # 注意这里构建的stage和论文图中有些差异
            # 这里的stage不包含该stage的patch_merging层,包含的是下个stage的
            layers = BasicLayer(dim=int(embed_dim * 2 ** i_layer),  # 传入特征矩阵的维度,即channel方向的深度
                                depth=depths[i_layer],              # 表示当前stage中需要堆叠的多少Swin Transformer Block
                                num_heads=num_heads[i_layer],       # 表示每一个Stage模块内,Swin Transformer Block中采用的Multi-Head self-Attention的head的个数
                                window_size=window_size,            # 表示W-MSA与SW-MSA所采用的window的大小
                                mlp_ratio=self.mlp_ratio,           # 表示MLP模块中,第一个全连接层增大的倍数
                                qkv_bias=qkv_bias,
                                drop=drop_rate,                     # 对应的PatchEmbed层后面的
                                attn_drop=attn_drop_rate,           # 对应于Multi-Head self-Attention模块中对应的dropRate
                                drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],     # 对应于每一个Swin-Transformer模块中采用的DropRate   其是慢慢的递增的,从0增长到drop_path_rate
                                norm_layer=norm_layer,
                                downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,   # 判断是否是第四个,因为第四个Stage是没有PatchMerging层的
                                use_checkpoint=use_checkpoint)
            self.layers.append(layers)

        self.norm = norm_layer(self.num_features)
        self.avgpool = nn.AdaptiveAvgPool1d(1)   # 自适应的全局平均池化
        self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()

        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            nn.init.trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    def forward(self, x):
        # x: [B, L, C]
        x, H, W = self.patch_embed(x)  # 对图像下采样4倍
        x = self.pos_drop(x)

        # 依次传入各个stage中
        for layer in self.layers:
            x, H, W = layer(x, H, W)

        x = self.norm(x)  # [B, L, C]
        x = self.avgpool(x.transpose(1, 2))  # [B, C, 1]
        x = torch.flatten(x, 1)
        x = self.head(x)   # 经过全连接层,得到输出
        return x


def swin_tiny_patch4_window7_224(num_classes: int = 1000, **kwargs):
    # trained ImageNet-1K
    # https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_tiny_patch4_window7_224.pth
    model = SwinTransformer(in_chans=3,
                            patch_size=4,
                            window_size=7,
                            embed_dim=96,
                            depths=(2, 2, 6, 2),
                            num_heads=(3, 6, 12, 24),
                            num_classes=num_classes,
                            **kwargs)
    return model


def swin_small_patch4_window7_224(num_classes: int = 1000, **kwargs):
    # trained ImageNet-1K
    # https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_small_patch4_window7_224.pth
    model = SwinTransformer(in_chans=3,
                            patch_size=4,
                            window_size=7,
                            embed_dim=96,
                            depths=(2, 2, 18, 2),
                            num_heads=(3, 6, 12, 24),
                            num_classes=num_classes,
                            **kwargs)
    return model


def swin_base_patch4_window7_224(num_classes: int = 1000, **kwargs):
    # trained ImageNet-1K
    # https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window7_224.pth
    model = SwinTransformer(in_chans=3,
                            patch_size=4,
                            window_size=7,
                            embed_dim=128,
                            depths=(2, 2, 18, 2),
                            num_heads=(4, 8, 16, 32),
                            num_classes=num_classes,
                            **kwargs)
    return model


def swin_base_patch4_window12_384(num_classes: int = 1000, **kwargs):
    # trained ImageNet-1K
    # https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window12_384.pth
    model = SwinTransformer(in_chans=3,
                            patch_size=4,
                            window_size=12,
                            embed_dim=128,
                            depths=(2, 2, 18, 2),
                            num_heads=(4, 8, 16, 32),
                            num_classes=num_classes,
                            **kwargs)
    return model


def swin_base_patch4_window7_224_in22k(num_classes: int = 21841, **kwargs):
    # trained ImageNet-22K
    # https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window7_224_22k.pth
    model = SwinTransformer(in_chans=3,
                            patch_size=4,
                            window_size=7,
                            embed_dim=128,
                            depths=(2, 2, 18, 2),
                            num_heads=(4, 8, 16, 32),
                            num_classes=num_classes,
                            **kwargs)
    return model


def swin_base_patch4_window12_384_in22k(num_classes: int = 21841, **kwargs):
    # trained ImageNet-22K
    # https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window12_384_22k.pth
    model = SwinTransformer(in_chans=3,
                            patch_size=4,
                            window_size=12,
                            embed_dim=128,
                            depths=(2, 2, 18, 2),
                            num_heads=(4, 8, 16, 32),
                            num_classes=num_classes,
                            **kwargs)
    return model


def swin_large_patch4_window7_224_in22k(num_classes: int = 21841, **kwargs):
    # trained ImageNet-22K
    # https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window7_224_22k.pth
    model = SwinTransformer(in_chans=3,
                            patch_size=4,
                            window_size=7,
                            embed_dim=192,
                            depths=(2, 2, 18, 2),
                            num_heads=(6, 12, 24, 48),
                            num_classes=num_classes,
                            **kwargs)
    return model


def swin_large_patch4_window12_384_in22k(num_classes: int = 21841, **kwargs):
    # trained ImageNet-22K
    # https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window12_384_22k.pth
    model = SwinTransformer(in_chans=3,
                            patch_size=4,
                            window_size=12,
                            embed_dim=192,
                            depths=(2, 2, 18, 2),
                            num_heads=(6, 12, 24, 48),
                            num_classes=num_classes,
                            **kwargs)
    return model

到了这里,关于深度学习网络模型————Swin-Transformer详细讲解与代码实现的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Keras-深度学习-神经网络-人脸识别模型

    目录 模型搭建 模型训练 ①导入所需的库,导入了 Keras 和其他必要的库,用于构建和处理图像数据。 ②加载人脸数据并进行处理,并将其划分为训练集和测试集。每个人的图像按顺序排列,训练集包含每个人前6张图像,测试集包含剩余的图像。每个图像都被转换为像素值列

    2024年02月12日
    浏览(55)
  • 【机器学习合集】模型设计之网络宽度和深度设计 ->(个人学习记录笔记)

    在深度学习中,网络的宽度和深度是两个重要的超参数,它们对模型的性能和训练过程有重要影响。以下是有关网络宽度和深度的设计考虑: 网络宽度: 网络宽度指的是 每个层中的神经元数量 。增加宽度可以增加模型的 表示能力 ,有助于学习更复杂的模式。但要注意,增

    2024年02月08日
    浏览(35)
  • 深度学习 | TCN时间卷积神经网络模型答疑

    问题汇总 1.使用 TCN 进行序列建模有哪些优势? 2.TCN 的特征? 问题回答 1.使用 TCN 进行序列建模具备以下优势: 并行性。与 RNN 中后继时间步长的预测必须等待之前时间步完成预测不同,卷积可以并行完成,因为每一层都使用相同的滤波器。因此,在训练和评估中,TCN 可以处

    2024年02月10日
    浏览(43)
  • 深度学习网络模型——ConvNeXt网络详解、ConvNeXt网络训练花分类数据集整体项目实现

    ConvNeXt 论文名称: A ConvNet for the 2020s 论文下载链接: https://arxiv.org/abs/2201.03545 model.py

    2024年01月17日
    浏览(53)
  • 深度学习笔记之循环神经网络(十)基于循环神经网络模型的简单示例

    本节我们将前面介绍的几种 循环神经网络 —— RNN,LSTM,GRU text{RNN,LSTM,GRU} RNN,LSTM,GRU 关于实例中的一个演示,但重点并不仅在于这些模型,这里以 示例 的形式对 One-hot text{One-hot} One-hot 向量 重新进行认知 。 自然语言 ( Natural Language ) (text{Natural Language}) ( Natural Language ) 是人类

    2024年02月07日
    浏览(52)
  • 深度学习(16)--基于经典网络架构resnet训练图像分类模型

    目录 一.项目介绍 二.项目流程详解 2.1.引入所需的工具包 2.2.数据读取和预处理 2.3.加载resnet152模型 2.4.初始化模型 2.5.设置需要更新的参数 2.6.训练模块设置 2.7.再次训练所有层 2.8.测试网络效果 三.完整代码 使用PyTorch工具包调用经典网络架构resnet训练图像分类模型,用于分辨

    2024年02月20日
    浏览(42)
  • 稀疏光流法跟中移动物体、监督学习聚类、K均值聚类、加载深度神经网络模型、深度神经网络模型的使用

    目录 1、稀疏光流法跟中移动物体 2、监督学习聚类 3、K均值聚类 4、加载深度神经网络模型 5、深度神经网络模型的使用          

    2024年02月16日
    浏览(48)
  • PyTorch深度学习实战(1)——神经网络与模型训练过程详解

    人工神经网络 ( Artificial Neural Network , ANN ) 是一种监督学习算法,其灵感来自人类大脑的运作方式。类似于人脑中神经元连接和激活的方式,神经网络接受输入,通过某些函数在网络中进行传递,导致某些后续神经元被激活,从而产生输出。函数越复杂,网络对于输入的数据拟

    2024年02月06日
    浏览(52)
  • 深度学习——第7章 项目实战:自己动手写一个神经网络模型

    7.1 导入数据集 7.2 定义神经网络输入层、隐藏层、输出层神经元个数 7.3 网络参数W和b初始化 7.4 正向传播过程 7.5 损失函数 7.6 反向传播过程 7.7 网络参数更新 7.8 搭建整个神经网络模型 7.9 模型训练 7.10 模型预测 7.11 隐藏层神经元个数对分类效果的影响 上一课主要介绍了最简

    2024年01月16日
    浏览(44)
  • 【深度学习实验】循环神经网络(四):基于 LSTM 的语言模型训练

    目录 一、实验介绍 二、实验环境 1. 配置虚拟环境 2. 库版本介绍 三、实验内容 0. 导入必要的工具包 1. RNN与梯度裁剪 2. LSTM模型 3. 训练函数 a. train_epoch b. train 4. 文本预测 5. GPU判断函数 6. 训练与测试 7. 代码整合         经验是智慧之父,记忆是智慧之母。 ——谚语    

    2024年02月07日
    浏览(48)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包