DLA :pytorch添加算子

这篇具有很好参考价值的文章主要介绍了DLA :pytorch添加算子。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

pytorch的C++ extension写法

        这部分主要介绍如何在pytorch中添加自定义的算子(例如,您可能希望 使用您在论文中找到的新颖激活函数,或实现操作 您作为研究的一部分进行了开发。),需要以下cuda基础。就总体的逻辑来说正向传播需要输入数据,反向传播需要输入数据和上一层的梯度,然后分别实现这两个kernel,将这两个kernerl绑定到pytorch即可。

add

  • 但实际上来说,这可能不是一个很好的教程,因为加法中没有对输入的grad_out进行继续的操作(不用写cuda的操作)。所以实际上只需要正向传播的launch_add2函数。更重要的是作者大佬写了博客介绍。
// https://github.com/godweiyang/NN-CUDA-Example/blob/master/kernel/add2_kernel.cu

__global__ void add2_kernel(float* c,
                            const float* a,
                            const float* b,
                            int n) {
    for (int i = blockIdx.x * blockDim.x + threadIdx.x; \
            i < n; i += gridDim.x * blockDim.x) {
        c[i] = a[i] + b[i];
    }
}

void launch_add2(float* c,
                 const float* a,
                 const float* b,
                 int n) {
    // 创建 [(n + 1023) / 1024 ,1 ,1]的三维向量数据
    dim3 grid((n + 1023) / 1024);//dim3 为CUDA中三维向量结构体
    // 创建 [1024 ,1 ,1]的三维向量数据
    dim3 block(1024);
    // 函数add2_kernel实现两个n维向量相加
    // 共有(n + 1023) / 1024*1*1个block , 每个block有1024*1*1个线程
    add2_kernel<<<grid, block>>>(c, a, b, n);
}
// https://github1s.com/godweiyang/NN-CUDA-Example/blob/master/pytorch/train.py#L49-L53
 from torch.utils.cpp_extension import load
        cuda_module = load(name="add2",
                           extra_include_paths=["include"],
                           sources=["pytorch/add2_ops.cpp", "kernel/add2_kernel.cu"],
                           verbose=True)
// https://github1s.com/godweiyang/NN-CUDA-Example/blob/master/pytorch/add2_ops.cpp#L14-L18
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("torch_launch_add2",
          &torch_launch_add2,
          "add2 kernel warpper");
}
// 在模块中使用(注:这个模块还重写了backward)https://github1s.com/godweiyang/NN-CUDA-Example/blob/master/pytorch/train.py#L7-L25
class AddModelFunction(Function):
    @staticmethod
    def forward(ctx, a, b, n):
        c = torch.empty(n).to(device="cuda:0")

        if args.compiler == 'jit':
            cuda_module.torch_launch_add2(c, a, b, n)
        elif args.compiler == 'setup':
            add2.torch_launch_add2(c, a, b, n)
        elif args.compiler == 'cmake':
            torch.ops.add2.torch_launch_add2(c, a, b, n)
        else:
            raise Exception("Type of cuda compiler must be one of jit/setup/cmake.")

        return c

    @staticmethod
    def backward(ctx, grad_output):
        return (grad_output, grad_output, None)

DLA :pytorch添加算子,深度学习,pytorch,人工智能,python

binary activation function

  • 正向计算为:
x > 1 ? 1 : -1;// 也可以使用sign() 函数(求符号函数)实现
  • 这篇文章作者没有自己写正向传播的算子,使用的是at::sign
// https://github1s.com/jxgu1016/BinActivateFunc_PyTorch/blob/master/src/cuda/BinActivateFunc_cuda.cpp#L17-L22
at::Tensor BinActivateFunc_forward(
    at::Tensor input) 
{
    CHECK_INPUT(input);
    return at::sign(input);
}
  • 这篇文章用的Setuptools将写好的算子和pytorch链接起来,运行时需要安装一下(JIT运行时编译也很香,代码直接运行,就是cmakelist.txt需要各种环境配置很麻烦)。绑定部分见链接。以下是作者实现的反向传播的kernel:
// https://github.com/jxgu1016/BinActivateFunc_PyTorch/blob/master/src/cuda/BinActivateFunc_cuda_kernel.cu
#include <ATen/ATen.h>

#include <cuda.h>
#include <cuda_runtime.h>

#include <vector>

// CUDA: grid stride looping
#define CUDA_KERNEL_LOOP(i, n) \
  for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); i += blockDim.x * gridDim.x)

namespace {
template <typename scalar_t>
__global__ void BinActivateFunc_cuda_backward_kernel(
    const int nthreads,
    const scalar_t* __restrict__ input_data,
    scalar_t* __restrict__ gradInput_data) 
{
    CUDA_KERNEL_LOOP(n, nthreads) {
        if (*(input_data + n) > 1 || *(input_data + n) < -1) {
            *(gradInput_data + n) = 0;
        }
    }
}
} // namespace

int BinActivateFunc_cuda_backward(
    at::Tensor input,
    at::Tensor gradInput) 
{
    const int nthreads = input.numel();
    const int CUDA_NUM_THREADS = 1024;
    const int nblocks = (nthreads + CUDA_NUM_THREADS - 1) / CUDA_NUM_THREADS;

    AT_DISPATCH_FLOATING_TYPES(input.type(), "BinActivateFunc_cuda_backward", ([&] {
        BinActivateFunc_cuda_backward_kernel<scalar_t><<<nblocks, CUDA_NUM_THREADS>>>(
            nthreads,
            input.data<scalar_t>(),
            gradInput.data<scalar_t>());
    }));
    return 1;
}

swish

// https://github1s.com/thomasbrandon/swish-torch/blob/HEAD/csrc/swish_kernel.cu
#include <torch/types.h>
#include <cuda_runtime.h>
#include "CUDAApplyUtils.cuh"

// TORCH_CHECK replaces AT_CHECK in PyTorch 1,2, support 1.1 as well.
#ifndef TORCH_CHECK
#define TORCH_CHECK AT_CHECK
#endif

#ifndef __CUDACC_EXTENDED_LAMBDA__
#error "please compile with --expt-extended-lambda"
#endif

namespace kernel {
#include "swish.h"

using at::cuda::CUDA_tensor_apply2;
using at::cuda::CUDA_tensor_apply3;
using at::cuda::TensorArgType;

template <typename scalar_t>
void
swish_forward(
  torch::Tensor &output,
  const torch::Tensor &input
) {
  CUDA_tensor_apply2<scalar_t,scalar_t>(
    output, input,
    [=] __host__ __device__ (scalar_t &out, const scalar_t &inp) {
      swish_fwd_func(out, inp);
    },
    TensorArgType::ReadWrite, TensorArgType::ReadOnly
  );
}

template <typename scalar_t>
void
swish_backward(
  torch::Tensor &grad_inp,
  const torch::Tensor &input,
  const torch::Tensor &grad_out
) {
  CUDA_tensor_apply3<scalar_t,scalar_t,scalar_t>(
    grad_inp, input, grad_out,
    [=] __host__ __device__ (scalar_t &grad_inp, const scalar_t &inp, const scalar_t &grad_out) {
      swish_bwd_func(grad_inp, inp, grad_out);
    },
    TensorArgType::ReadWrite, TensorArgType::ReadOnly, TensorArgType::ReadOnly
  );
}

} // namespace kernel

void
swish_forward_cuda(
    torch::Tensor &output, const torch::Tensor &input
) {
  auto in_arg  = torch::TensorArg(input,  "input",  0),
       out_arg = torch::TensorArg(output, "output", 1);
  torch::checkAllDefined("swish_forward_cuda", {in_arg, out_arg});
  torch::checkAllSameGPU("swish_forward_cuda", {in_arg, out_arg});
  AT_DISPATCH_FLOATING_TYPES_AND_HALF(input.scalar_type(), "swish_forward_cuda", [&] {
      kernel::swish_forward<scalar_t>(output, input);
  });
}

void
swish_backward_cuda(
  torch::Tensor &grad_inp, const torch::Tensor &input, const torch::Tensor &grad_out
) {
  auto gi_arg = torch::TensorArg(grad_inp, "grad_inp", 0),
       in_arg = torch::TensorArg(input,    "input",    1),
       go_arg = torch::TensorArg(grad_out, "grad_out", 2);
  torch::checkAllDefined("swish_backward_cuda", {gi_arg, in_arg, go_arg});
  torch::checkAllSameGPU("swish_backward_cuda", {gi_arg, in_arg, go_arg});
  AT_DISPATCH_FLOATING_TYPES_AND_HALF(grad_inp.scalar_type(), "swish_backward_cuda", [&] {
      kernel::swish_backward<scalar_t>(grad_inp, input, grad_out);
  });
}

cg

  • ScatWave是使用CUDA散射的Torch实现,主要使用lua语言https://github.com/edouardoyallon/scatwave

  • https://github.com/huangtinglin/PyTorch-extension-Convolution

  • This is a tutorial to explore how to customize operations in PyTorch.

  • https://pytorch.org/tutorials/advanced/cpp_extension.html

  • 台湾博主 Pytorch+cpp/cuda extension 教學 tutorial 1 - English CC - B站搬运地址

  • pytorch的C++ extension写法

  • https://github.com/salinaaaaaa/NVIDIA-GPU-Tensor-Core-Accelerator-PyTorch-OpenCV

  • https://github.com/MariyaSha/Inference_withTorchTensorRT

  • 项目介绍了简单的CUDA入门,涉及到CUDA执行模型、线程层次、CUDA内存模型、核函数的编写方式以及PyTorch使用CUDA扩展的两种方式。通过该项目可以基本入门基于PyTorch的CUDA扩展的开发方式。

RWKV CUDA
  • 实例:手写 CUDA 算子,让 Pytorch 提速 20 倍(某特殊算子) https://zhuanlan.zhihu.com/p/476297195
  • https://github.com/BlinkDL/RWKV-CUDA
  • The CUDA version of the RWKV language model

数据加速

  • 用于在 Pytorch 中更快地固定 CPU <-> GPU 传输的库

环境

  • Docker images and github actions for building packages containing PyTorch C++/CUDA extensions.
    一个构建系统,用于生成(相对)轻量级和便携式的 PyPI 轮子,其中包含 PyTorch C++/CUDA 扩展。使用Torch Extension Builder构建的轮子动态链接到用户PyTorch安装中包含的Torch和CUDA库。最终用户计算机上不需要安装 CUDA。

CG

  • 例如,您可能希望 使用您在论文中找到的新颖激活函数,或实现操作 您作为研究的一部分进行了开发。例如,您的代码 可能需要非常快,因为它在您的模型中调用非常频繁 或者即使打几个电话也非常昂贵。另一个合理的原因是它 依赖于其他 C 或 C++ 库或与其他 C 或 库交互。

  • 在 PyTorch 中集成此类自定义操作的最简单方法是编写它 在 Python 中通过扩展

  • 又发现一个部署工具文章来源地址https://www.toymoban.com/news/detail-622796.html

研究人员很难将机器学习模型交付到生产环境。

解决方案的一部分是Docker,但要让它工作非常复杂:Dockerfiles,预/后处理,Flask服务器,CUDA版本。通常情况下,研究人员必须与工程师坐下来部署该死的东西。

安德烈亚斯和本创造了Cog。Andreas曾经在Spotify工作,在那里他构建了使用Docker构建和部署ML模型的工具。Ben 曾在 Docker 工作,在那里他创建了 Docker Compose。

我们意识到,除了Spotify之外,其他公司也在使用Docker来构建和部署机器学习模型。Uber和其他公司也建立了类似的系统。因此,我们正在制作一个开源版本,以便其他人也可以这样做。

如果您有兴趣使用它或想与我们合作,请与我们联系。我们在 Discord 上或给我们发电子邮件 team@replicate.com.

到了这里,关于DLA :pytorch添加算子的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • AI写作革命:PyTorch如何助力人工智能走向深度创新

    身为专注于人工智能研究的学者,我十分热衷于分析\\\"AI写稿\\\"与\\\"PyTorch\\\"这两项领先技术。面对日益精进的人工智能科技,\\\"AI写作\\\"已不再是天方夜谭;而\\\"PyTorch\\\"如璀璨明珠般耀眼,作为深度学习领域的尖端工具,正有力地推进着人工智能化进程。于此篇文章中,我将详细解析\\\"

    2024年04月13日
    浏览(57)
  • 人工智能学习07--pytorch14--ResNet网络/BN/迁移学习详解+pytorch搭建

    亮点:网络结构特别深 (突变点是因为学习率除0.1?) 梯度消失 :假设每一层的误差梯度是一个小于1的数,则在反向传播过程中,每向前传播一层,都要乘以一个小于1的误差梯度。当网络越来越深的时候,相乘的这些小于1的系数越多,就越趋近于0,这样梯度就会越来越小

    2023年04月11日
    浏览(159)
  • 人工智能深度学习

    目录 人工智能 深度学习 机器学习 神经网络 机器学习的范围 模式识别 数据挖掘 统计学习 计算机视觉 语音识别 自然语言处理 机器学习的方法 回归算法 神经网络 SVM(支持向量机) 聚类算法 降维算法 推荐算法 其他 机器学习的分类 机器学习模型的评估 机器学习的应用 机

    2024年02月22日
    浏览(58)
  • 人工智能之深度学习

    第一章 人工智能概述 1.1人工智能的概念和历史 1.2人工智能的发展趋势和挑战 1.3人工智能的伦理和社会问题 第二章 数学基础 1.1线性代数 1.2概率与统计 1.3微积分 第三章 监督学习 1.1无监督学习 1.2半监督学习 1.3增强学习 第四章 深度学习 1.1神经网络的基本原理 1.2深度学习的

    2024年02月09日
    浏览(55)
  • 人工智能、机器学习、深度学习的区别

    人工智能涵盖范围最广,它包含了机器学习;而机器学习是人工智能的重要研究内容,它又包含了深度学习。 人工智能是一门以计算机科学为基础,融合了数学、神经学、心理学、控制学等多个科目的交叉学科。 人工智能是一门致力于使计算机能够模拟、模仿人类智能的学

    2024年02月08日
    浏览(56)
  • 人工智能学习07--pytorch15(前接pytorch10)--目标检测:FPN结构详解

    backbone:骨干网络,例如cnn的一系列。(特征提取) (a)特征图像金字塔 检测不同尺寸目标。 首先将图片缩放到不同尺度,针对每个尺度图片都一次通过算法进行预测。 但是这样一来,生成多少个尺度就要预测多少次,训练效率很低。 (b)单一特征图 faster rcnn所采用的一种方式

    2023年04月12日
    浏览(74)
  • 机器学习入门教学——人工智能、机器学习、深度学习

    1、人工智能 人工智能相当于人类的代理人,我们现在所接触到的人工智能基本上都是弱AI,主要作用是正确解释从外部获得的数据,并对这些数据加以学习和利用,以便灵活的实现特定目标和任务。 例如: 阿尔法狗、智能汽车 简单来说: 人工智能使机器像人类一样进行感

    2024年02月09日
    浏览(91)
  • 探索人工智能:深度学习、人工智能安全和人工智能编程(文末送书)

    人工智能知识对于当今的互联网技术人来说已经是刚需。但人工智能的概念、流派、技术纷繁复杂,选择哪本书入门最适合呢? 这部被誉为人工智能“百科全书”的《人工智能(第3版)》,可以作为每个技术人进入 AI 世界的第一本书。 购书链接,限时特惠5折 这本书是美国

    2024年02月03日
    浏览(119)
  • 一探究竟:人工智能、机器学习、深度学习

    1.1 人工智能是什么?          1956年在美国Dartmounth 大学举办的一场研讨会中提出了人工智能这一概念。人工智能(Artificial Intelligence),简称AI,是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的

    2024年02月17日
    浏览(53)
  • 12、人工智能、机器学习、深度学习的关系

    很多年前听一个机器学习的公开课,在QA环节,一个同学问了老师一个问题“ 机器学习和深度学习是什么关系 ”? 老师先没回答,而是反问了在场的同学,结果问了2-3个,没有人可以回答的很到位,我当时也是初学一脸懵,会场准备的小礼品也没有拿到。 后来老师解释“机

    2024年02月05日
    浏览(72)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包