[HAL库]STM32 ADC功能和DMA读数据的方法

这篇具有很好参考价值的文章主要介绍了[HAL库]STM32 ADC功能和DMA读数据的方法。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

这篇博客记录下 STM32F103R8T6 是怎么开ADC、用DMA搬数据的方法。方便日后使用的时候查资料。

DMA其实就是个搬运工,专门负责搬数据,没有DMA之前,搬数据是由MCU核心来负责,虽说都能完成搬数据的动作,但是MCU干这件事浪费资源且效率低,所以有DMA的场合尽量使用DMA来负责搬数据,需要读数据的时候,可以直接去数组里取就行了。

从建工程开始,下面是各步骤:

第一步–选择时钟输入:
stm32 hal adc dma,技术分享,stm32,单片机,嵌入式硬件
第二步–设置调试模式:
stm32 hal adc dma,技术分享,stm32,单片机,嵌入式硬件
第三步–设置ADC基础设置、打开DMA
stm32 hal adc dma,技术分享,stm32,单片机,嵌入式硬件
stm32 hal adc dma,技术分享,stm32,单片机,嵌入式硬件
DMA模式选择为circular,代表循环模式,读完一次ADC之后,DMA继续读,并且继续往存放结果值的数组里面搬数据。

开启了DMA之后,32CubeMx默认帮我们开启了ADC的DMA中断,就是读取到满足条件的值之后,会产生一个中断。比如我们设置了DMA读10次数值,然后中断一次,那么DMA在搬了10次数据之后就会产生一个中断,我们需要到回调函数里面做相应的处理。这个中断是可以关掉的。
stm32 hal adc dma,技术分享,stm32,单片机,嵌入式硬件
force DMA channels interrupts 这个对勾取消掉,就可以把下面灰色的对勾取消。这样设置后,读取10次(假设我们设置了DMA读10次)值之后,也不会进入中断。

第四步–设置芯片主频
stm32 hal adc dma,技术分享,stm32,单片机,嵌入式硬件
我选的是外部晶振,使用的是8Mhz频率的,倍频之后最大可以设置为72Mhz,那么这里就把主频开到最大,但是ADC的频率是不能太大的,32CubeMx会做一个限制,最多也就能选到12。ADC最快的时钟前面看其他博客有看到,但是现在没找到,先留个坑在这,以后知道多少了再来填。

完成了上面的设置后,基本就OK了,最后一步设置一下生成的项目文件
stm32 hal adc dma,技术分享,stm32,单片机,嵌入式硬件
选择只包含使用到的头文件进来。
选择为外设初始化单独的.c和.h文件。

给项目命好名,然后选择生成MDK文件。生成项目,并打开项目。

主函数里面添加这几句调用函数,把ADC功能开起来

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2022 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "adc.h"
#include "dma.h"
#include "gpio.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
typedef   unsigned char   u8;
typedef   unsigned int    u16;
/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/

/* USER CODE BEGIN PV */
	float volt=0;
	u16   temp=0;
	u8 		i;
	uint16_t adcbuf[15]={0};
/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_DMA_Init();
  MX_ADC1_Init();										//里面已经选择好了相应的通道
  /* USER CODE BEGIN 2 */
	HAL_ADCEx_Calibration_Start(&hadc1);				//开启ADC1
	HAL_ADC_Start_DMA(&hadc1,(uint32_t *)adcbuf,10);	//开启负责ADC1的DMA通道,把存放结果的数组首地址传过来,搬运10次产生/不产生中断
  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
    /* USER CODE END WHILE */
	HAL_Delay(50);
    for(i=0;i<10;i++)
    {
        temp += adcbuf[i];
    }
    temp = temp/10;					//累加10次的结果 做平均处理
    volt = (float)temp/4096*3.24;	//处理过后的值 计算输入电压是多少
    temp = 0;
    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
  RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }

  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  {
    Error_Handler();
  }
  PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC;
  PeriphClkInit.AdcClockSelection = RCC_ADCPCLK2_DIV6;
  if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
  {
    Error_Handler();
  }
}

/* USER CODE BEGIN 4 */

/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

输入值跟计算出来的理论值:本个项目是输入2.692V,通过理论计算出来的volt=2.68多,差了0.01V不到。

这次是使用了比较简单的ADC功能,还有很多高级功能,比如注入转换这类的高级功能还没时间细细研究。先跳过其他复杂功能继续往下学习。文章来源地址https://www.toymoban.com/news/detail-623062.html

到了这里,关于[HAL库]STM32 ADC功能和DMA读数据的方法的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • STM32HAL ADC+TIM+DMA采集交流信号 基于cubemx

    本文主要讲解定时器触发ADC去采集交流信号,DMA把数据搬移到内存。 所需工具: 开发板:STM32F103C8T6 STM32CubeMX IDE: Keil-MDK 相关文章: STM32HAL ADC+TIM+DMA采集交流信号 基于cubemx(二) STM32cubemx ADC+TIM+DMA超频采样 ADC+TIM+DMA采集交流信号是电赛中使用范围最为广泛的一个技术。这个模

    2024年02月03日
    浏览(53)
  • STM32CubeMX配置STM32G031多通道ADC + DMA采集(HAL库开发)

     时钟配置HSI主频配置64M  勾选打开8个通道的ADC  使能连续转换模式  添加DMA  DMA模式选择循环模式  使能DMA连续请求 采样时间配置160.5 转换次数为8  配置好8次转换的顺序  配置好串口,选择异步模式 配置好需要的开发环境并获取代码  修改main.c 串口重定向  串口重定向

    2024年02月08日
    浏览(58)
  • STM32 hal库使用笔记(五)ADC—单通道/双通道DMA传输

    实现目的:利用ADC采集光敏传感器/烟雾传感器的值,并利用串口打印 实验平台:正点原子精英版 一、简介 1.DMA的介绍 参考:STM32 hal库使用笔记(四)DMA—内存到内存/内存到外设_乱码小伙的博客-CSDN博客 2.ADC简介      ADC(Analog-Digital Converter)模拟-数字转换器 ADC可以将引脚

    2024年02月03日
    浏览(60)
  • STM32基于hal库的adc以DMA的多通道采样以及所遇问题解决

    目录 准备 配置 步骤  总结   正点原子的STM32F103ZET6开发板(精英版) CUBEMX配置软件 KEIL5  右对齐就是正常的数据格式。左对齐除以16后得正常数据。(当输出非常大时考虑是否改了对齐方式,默认都是右对齐)  扫描模式,连续转换模式使能。(多通道下扫描模式自动使能

    2024年02月04日
    浏览(52)
  • STM32 CubeMX ADC采集 单通道,多通道,内部温度(轮询,DMA,中断)(HAL库)

    12位ADC是一种逐次逼近型模拟数字转换器。它有多达18个通道,可测量16个外部和2个内部 信号源。各通道的A/D转换可以单次、连续、扫描或间断模式执行。ADC的结果可以左对齐或右 对齐方式存储在16位数据寄存器中。 模拟看门狗特性允许应用程序检测输入电压是否超出用户定

    2024年02月06日
    浏览(86)
  • 【STM32+HAL+Proteus】系列学习教程---ADC(查询、中断、DMA模式下的电压采集)

    1、学会STM32CubeMX软件关于ADC的配置 2、掌握ADC三种模式(查询、中断、DMA)编程 3、具体目标:1、将开发板单片机采集到的电压值上传至上位机串口调试助手显示。 ADC(Analog to Digital Converter)即模数转换器,用来将模拟信号转换为数字信号。 A/D转换过程 分辨率:  A/D转换器对

    2024年04月26日
    浏览(40)
  • STM32_HAL库—ADC采集数据

    目录 一、简介 二、实例 1. (单通道、阻塞式)配置及实现方式 2. (单通道、中断式)配置及实现方式 3. (多通道、阻塞式)配置及实现方式 4. (多通道、DMA)配置及实现方式        STM32 的ADC精度为 12 位,且每个 ADC 最多有 16 个外部通道。各通道的A/D转换可以单次、连续、扫描或

    2024年02月10日
    浏览(43)
  • STM32F4 HAL库使用DMA进行ADC采样实时发送波形到串口显示(包含傅里叶变换)

    按下 STM32F4 的 KEY0 按键,通过外部中断的方式对按键进行检测,然后进行一次固定点数的 DMA ADC 采集,采集完成后在 DMA 的中断发送采集到的数据,然后清空数据区准备下一次的按键中断。电脑接受到串口数据后对数据进行简单处理和傅里叶变化,然后实时显示在电脑上。 开

    2024年02月14日
    浏览(42)
  • STM32(HAL库)通过ADC读取MQ2数据

    目录 1、简介 2、CubeMX初始化配置 2.1 基础配置 2.1.1 SYS配置  2.1.2 RCC配置 2.2 ADC外设配置 2.3 串口外设配置  2.4 项目生成  3、KEIL端程序整合 3.1 串口重映射 3.2 ADC数据采集 3.3 主函数代 3.4 效果展示 本文通过STM32F103C8T6单片机通过HAL库方式对MQ2烟雾传感器进行数据的读取,并通过

    2024年02月16日
    浏览(39)
  • STM32 HAL库 STM32CubeMX -- ADC

    ADC(Analog-to-Digital Converter)指模/数转换器或者模拟/数字转换器。 是指将连续变量的模拟信号转换为离散的数字信号的器件。 也就是将 模拟信号 转化为 数字信号 。 STM32f103 系列有3 个ADC,精度为12 位,每个ADC 最多有16 个外部通道和2个内部信号源。其中ADC1 和ADC2 都有16 个外部

    2024年02月15日
    浏览(44)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包