【C++】开源:Eigen3矩阵与线性代数库配置使用

这篇具有很好参考价值的文章主要介绍了【C++】开源:Eigen3矩阵与线性代数库配置使用。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

😏★,°:.☆( ̄▽ ̄)/$:.°★ 😏
这篇文章主要介绍Eigen3线性代数模板库配置使用。
无专精则不能成,无涉猎则不能通。——梁启超
欢迎来到我的博客,一起学习,共同进步。
喜欢的朋友可以关注一下,下次更新不迷路🥞

😏1. 项目介绍

项目Gitlab地址:https://gitlab.com/libeigen/eigen

官网:https://eigen.tuxfamily.org/index.php?title=Main_Page

Eigen3 是一个开源的 C++ 模板库,用于线性代数和数值计算。它提供了高效、灵活和易于使用的矩阵、向量和线性代数运算功能,广泛应用于科学计算、机器学习、图像处理和工程领域等。重点是:轻量级,只包含头文件

以下是 Eigen3 的一些主要特点和功能:

1.高性能:Eigen3 通过使用表达式模板技术,能够在编译时进行优化,并产生高度优化的机器码。这使得 Eigen3 在数值计算中具有出色的性能,并且比某些其他常见的线性代数库更快。

2.易于使用:Eigen3 提供了直观和简洁的 API,使得编写线性代数代码变得容易。它采用了类似于数学符号的语法,使得代码可读性强,更接近人类思维方式。

3.丰富的功能:Eigen3 提供了许多功能来支持常见的线性代数操作,包括矩阵和向量的基本运算(加、减、乘、除)、矩阵分解(LU、QR、SVD 等)、特征值和特征向量计算、线性方程组求解、矩阵代数操作(转置、逆、行列式等)以及各种线性代数算法。

4.平台无关性:Eigen3 是一个纯模板库,不依赖于任何特定的硬件或操作系统,因此可以在多个平台上使用和移植。

5.轻量级:Eigen3 的代码库非常小巧,只有头文件,易于集成到其他项目中。

6.兼容性:Eigen3 支持 C++11 或更高版本的编译器,并且与其他常见的 C++ 库和框架(如 STL、Boost 等)兼容。

😊2. 环境配置

下面进行环境配置:

# ubuntu安装
sudo apt install libeigen3-dev

要在项目中使用eigen3,可创建cmake工程,CMakeLists.txt示例:

cmake_minimum_required(VERSION 3.12)
project(useEigen)
set(CMAKE_CXX_STANDARD 11)

# 寻找Eigen库
find_package(Eigen3 REQUIRED)
# 将Eigen库include进来
include_directories(${EIGEN3_INCLUDE_DIRS})

add_executable(${PROJECT_NAME} main.cpp)

另外,简单的,可以在g++时带上头文件目录编译,示例:

g++ -o main main.cpp -I /usr/include/eigen3/ #(不加也可)

😆3. 使用说明

下面进行使用分析:

矩阵运算示例:

#include <iostream>
#include <Eigen/Dense>

using namespace std;
using namespace Eigen;

int main() {
    // 以Xd方式声明一个3x3的矩阵
    MatrixXd mat(3, 3);
    // 将矩阵(0,0)位置元素赋为1.5
    mat(0, 0) = 1.5;
    cout << "MatrixXd:\n " << mat << endl;

    // 以Matrix方式声明一个5x2的矩阵
    Matrix<double, 5, 2> m1;
    cout << "Matrix:\n " << m1 << endl;

    // 随机数矩阵
    MatrixXd m2 = MatrixXd::Random(5, 3);
    cout << "MatrixXd::Random:\n " << m2 << endl;

    Eigen::MatrixXd matrix1(2, 2);
    matrix1 << 1, 2,
               3, 4;

    Eigen::MatrixXd matrix2(2, 2);
    matrix2 << 5, 6,
               7, 8;

	// 矩阵加法
    Eigen::MatrixXd result = matrix1 + matrix2;
    std::cout << "Matrix Addition:\n" << result << std::endl;

	// 矩阵乘法
    result = matrix1 * matrix2;
    std::cout << "Matrix Multiplication:\n" << result << std::endl;

    return 0;
}

向量运算示例:

#include <iostream>
#include <Eigen/Dense>

using namespace std;
using namespace Eigen;

int main() {
    Vector3d v(1, 2, 3);
    cout << "ori vector:\n" << v << endl;
    cout << "* result:\n" << v * 3 << endl;
    // 点乘
    cout << "dot result:\n" << v.dot(v) << endl;
    // 叉乘
    cout << "cross result:\n" << v.cross(v) << endl;

    return 0;
}

求解线性方程组示例:

#include <iostream>
#include <Eigen/Dense>

using namespace std;
using namespace Eigen;

int main() {
    // 创建系数矩阵 A
    Matrix3d A;
    A << 2, 1, -1,
         -3, -1, 2,
         -2,  1, 2;

    // 创建右侧常数向量 b
    Vector3d b;
    b << 8, -11, -3;

    // 求解线性方程组 Ax=b
    Vector3d x = A.colPivHouseholderQr().solve(b);

    // 打印解向量 x
    std::cout << "Solution x = \n" << x << std::endl;

    return 0;
}

【C++】开源:Eigen3矩阵与线性代数库配置使用,# c++开源项目学习,线性代数,c++,开源

以上。文章来源地址https://www.toymoban.com/news/detail-623276.html

到了这里,关于【C++】开源:Eigen3矩阵与线性代数库配置使用的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 0203逆矩阵-矩阵及其运算-线性代数

    定义7 对于 n n n 阶矩阵A,如果有一个 n n n 阶矩阵B,使 A B = B A = E AB=BA=E A B = B A = E 则说矩阵A是可逆的,并把矩阵B称为A的逆矩阵,简称逆阵。 定理1 若矩阵A可逆,则 ∣ A ∣ ≠ 0 vert Avert not = 0 ∣ A ∣  = 0 证明: A 可逆,即有 A − 1 ,使得 A A − 1 = E ∣ A A − 1 ∣ = ∣ A

    2024年04月13日
    浏览(57)
  • 投影矩阵推导【线性代数】

    如果两个向量垂直,那么满足。但如果两个向量不垂直,我们就将 b 投影到 a 上,就得到了二者的距离,我们也称为向量 b 到直线 a 的误差。这样就有出现了垂直:                (1) 投影向量 p 在直线上,不妨假设  ,那么误差 。带入式(1)中得到: 投影矩阵:  

    2024年02月06日
    浏览(58)
  • 线性代数:矩阵的定义

    目录 一、定义 二、方阵 三、对角阵 四、单位阵 五、数量阵  六、行(列)矩阵  七、同型矩阵 八、矩阵相等 九、零矩阵 十、方阵的行列式

    2024年01月22日
    浏览(40)
  • 线性代数-矩阵的本质

    线性代数-矩阵的本质

    2024年02月11日
    浏览(45)
  • 线性代数_对称矩阵

    对称矩阵是线性代数中一种非常重要的矩阵结构,它具有许多独特的性质和应用。下面是对称矩阵的详细描述: ### 定义 对称矩阵,即对称方阵,是指一个n阶方阵A,其转置矩阵等于其本身,即A^T = A。这意味着方阵A中的元素满足交换律,即对于任意的i和j(i ≤ j),都有A[

    2024年02月02日
    浏览(46)
  • 线性代数(七) 矩阵分析

    从性线变换我们得出,矩阵和函数是密不可分的。如何用函数的思维来分析矩阵。 通过这个定义我们就定义了矩阵序列的 收敛性 。 研究矩阵序列收敛性的常用方法,是用《常见向量范数和矩阵范数》来研究矩阵序列的极限。 长度是范数的一个特例。事实上,Frobenius范数对

    2024年02月08日
    浏览(48)
  • 线性代数3:矩阵

    目录 矩阵研究的是什么呢? 逆阵 什么叫做逆阵?  例题1:  例题2:  逆阵的存在性 定理1: 定理2: 定理3: 定理4: 拉普拉茨方程 方阵可以的条件  例题3:  Note1: 例题4  Note2:  Note3: Note4:  Note5:  Note6: Note7:  例题5:  逆矩阵的求法: 方法1:伴随矩阵法:  方

    2024年02月13日
    浏览(56)
  • 线性代数:矩阵的秩

    矩阵的秩(Rank)是线性代数中一个非常重要的概念,表示一个矩阵的行向量或列向量的线性无关的数量,通常用 r ( A ) r(boldsymbol{A}) r ( A ) 表示。具体来说: 对于一个 m × n mtimes n m × n 的实矩阵 A boldsymbol{A} A ,它的行秩 r ( A ) r(boldsymbol{A}) r ( A ) 定义为 A boldsymbol{A} A 的各

    2024年02月07日
    浏览(45)
  • 线性代数2:矩阵(1)

    目录 矩阵: 矩阵的定义: 0矩阵 方阵  同型矩阵: 矩阵相等的判定条件  矩阵的三则运算: 乘法的适用条件 矩阵与常数的乘法: 矩阵的乘法: 矩阵的乘法法则:  Note1:  Note2:  Note3:  向量与矩阵的关系: 转置矩阵:  矩阵多项式: 矩阵的重要性质:  性质2:  性质

    2024年02月08日
    浏览(83)
  • 线性代数——求逆矩阵

    利用计算技巧凑出公式:两边加E、提取公因式、没有公因式可提时利用隐形的E=AA^(-1),因为E可看作系数1 主对角线有矩阵(副对角线是0矩阵),则分别逆后放在原位置 副对角线有矩阵(主对角线是0矩阵),则分别逆后互换位置

    2024年02月11日
    浏览(52)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包