title: 贝尔曼福特算法——负权值单源最短路径
date: 2023-05-16 11:42:26
tags: 数据结构与算法
-
贝尔曼福特算法——负权值单源最短路径
**问题:**具有负权值非环图的单源最短路径算法
git地址:https://github.com/944613709/HIT-Data-Structures-and-Algorithms
算法思想:
对图中的边进行V-1轮遍历,对所有的边松弛(对每条边v1->v2,如果d[v2]+Weight(v1->v2)<d[v2]就更新d[v2]),利用上述遍历松弛可以得到最终最短路径,和再次松弛判断有无负权值环(遍历都结束后,若再进行一次遍历,还能得到到某些节点更短的路径的话,则说明存在负环路)
算法步骤:
0. 建立图
1. 初始化d,如果s->v1有边,则d[v1]=G.ENode[s][v2],并且path设为s的下标,而d[s]=0;
*2.*对图进行V-1次松弛
1.1**每一次松弛,就是去遍历图的所有边,如果可以做到d[v1]+G.ENode[v1][v2] (v1->v2的weight) <d[v2],就更新d[v2]
*3.*再次进行遍历松弛,如果还能得到新的d的值,则代表存在负环路(环上权值和<0)
测试样例:
文章来源:https://www.toymoban.com/news/detail-623534.html
具体代码
**文章来源地址https://www.toymoban.com/news/detail-623534.html
- #include<bits/stdc++.h>** **#define MaxVerNum 100 //****顶点最大数目值** **#define INF 0x3f3f3f3f//****作为最大值** **using namespace std;** **//****图的数据结构** **typedef struct Graph** **{** **char VNode[MaxVerNum];//****顶点表** **int ENode[MaxVerNum][MaxVerNum];//****弧表** **int numVNode, numARC;//****顶点数、弧数** **}Graph;** **int D[MaxVerNum]; //****到各个顶点的最短路径** **int Path[MaxVerNum]; //****记录前驱** **void InitGraph(Graph &G)** **{** **memset(G.VNode, '#', sizeof(G.VNode));//****初始化顶点表** **//****初始化弧表** **for (int i = 0; i < MaxVerNum; i++)** **for (int j = 0; j < MaxVerNum; j++)** **G.ENode[i][j] = INF;** **G.numARC = G.numVNode = 0; //****初始化顶点数、弧数** **}** **bool InsertNode(Graph &G, char v)** **{** **if (G.numVNode < MaxVerNum)** **{** **G.VNode[G.numVNode++] = v;** **return true;** **}** **return false;** **}** **bool InsertENode(Graph &G, char v, char w, int weight)** **{** **int p1, p2;//v,w****两点下标** **p1 = p2 = -1;//****初始化** **for (int i = 0; i<G.numVNode; i++)//****寻找顶点下标** **{** **if (G.VNode[i] == v)p1 = i;** **if (G.VNode[i] == w)p2 = i;** **}** **if (-1 != p1&&-1 != p2)//****两点均可在图中找到** **{** **G.ENode[p1][p2] = weight;//****有向图邻接矩阵不对称** **G.numARC++;** **return true;** **}** **return false;** **}** **void Bellman_Ford(Graph G, int v)** **{** **//****初始化** **int n = G.numVNode;//n****为图的顶点个数** **for (int i = 0; i < n; i++)** **{** **D[i] = G.ENode[v][i];** **if (D[i] < INF)Path[i] = v;** **else Path[i] = -1;** **}** **D[v] = 0;** **for(int i=0;i<G.numVNode-1;i++)** **for(int j=0;j<G.numVNode;j++)** **for(int k=0;k<G.numVNode;k++)** **if (D[k] > D[j] + G.ENode[j][k])** **{** **D[k] = D[j] + G.ENode[j][k];** **Path[k] = j;** **}** **bool flag = true;** **for (int j = 0; j<G.numVNode - 1; j++)** **for (int k = 0; k<G.numVNode - 1; k++)** **if (D[k] > D[j] + G.ENode[j][k])** **{** **flag = false;** **break;** **}** **if(flag == false)** **{** **cout << "****有负圈错误" << endl;** **exit(0);** **}** **for(int i=0;i<n;i++)** **{** **cout<<"****顶点"<<G.VNode[i]<<" ";** **cout<<"D["<<i<<"]"<<"="<<D[i]<<" ";** **cout<<"Path["<<i<<"]="<<Path[i];** **cout<<endl;** **}** **}** **void CreateGraph(Graph &G) //****读入边和顶点建立邻接矩阵** **{** **FILE \*p;** **assert((p=fopen("MatGraph.txt","r"))!=NULL);** **int n;** **fscanf(p,"****顶点个数=%d;",&n);** **for(int i=0;i<n;i++)** **{** **char V;** **fscanf(p,"%c;",&V);** **if (InsertNode(G, V)) continue;//****插入点** **else {** **cout << "****输入错误!" << endl; break;** **}** **}** **int m;** **char flag;** **fscanf(p,"****边个数=%d;",&m);** **for(int i=0;i<m;i++)** **{** **char V1,V2;** **int weight;** **fscanf(p,"%c,%c,%d;",&V1,&V2,&weight);** **if(InsertENode(G,V1,V2,weight))** **continue;** **}** **fclose(p);** **cout << "****图的顶点及邻接矩阵:" << endl;** **for (int i = 0; i < G.numVNode; i++)** **{** **cout << G.VNode[i] << " ";** **}** **cout << endl;** **for (int i = 0; i < G.numVNode; i++)** **{** **for (int j = 0; j < G.numVNode; j++)** **{** **if (G.ENode[i][j] == INF)cout << "∞ ";** **else cout << G.ENode[i][j] << " ";** **}** **cout << endl;** **}** **}** **int main()** **{** **Graph G;** **InitGraph(G);** **CreateGraph(G);** **char V;** **int v = -1;** **cin >> V;** **for (int i = 0; i < G.numVNode; i++)** **if (G.VNode[i] == V)** **v = i;** **if (v == -1)** **{** **cout << "ERROR" << endl;** **return 0;** **}** **Bellman_Ford(G,v);** **}**
到了这里,关于贝尔曼福特算法——负权值单源最短路径的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!