Java对象内存模型
一个Java对象在内存中包括3个部分:对象头、实例数据和对齐填充
数据 内存 – CPU 寄存器 -127 补码 10000001 - 11111111 32位的处理器
一次能够去处理32个二进制位 4字节的数据 64位操作系统 8字节 2的64次方的寻址空间
指针压缩技术 JDK1.6出现的 开启了指针压缩 什么时候指针压缩会无效 ??
超过32G指针压缩无效
小端存储 :便于数据之间的类型转换,例如:long类型转换为int类型时,高地址部分的数据可以直接截掉。
大端存储 :便于数据类型的符号判断,因为最低地址位数据即为符号位,可以直接判断数据的正负号。
java中使用的是大端存储。
内存模型设计之–Class Pointer
句柄池访问:
直接指针访问对象图解:
区别:
句柄池:
使用句柄访问对象,会在堆中开辟一块内存作为句柄池,句柄中储存了对象实例数据(属性值结构体) 的内存地址,访问类型数据的内存地址(类信息,方法类型信息),对象实例数据一般也在heap中开 辟,类型数据一般储存在方法区中。
优点 :reference存储的是稳定的句柄地址,在对象被移动(垃圾收集时移动对象是非常普遍的行为) 时只会改变句柄中的实例数据指针,而reference本身不需要改变。
缺点 :增加了一次指针定位的时间开销。
直接访问:
直接指针访问方式指reference中直接储存对象在heap中的内存地址,但对应的类型数据访问地址需要 在实例中存储。
优点 :节省了一次指针定位的开销。
缺点 :在对象被移动时(如进行GC后的内存重新排列),reference本身需要被修改
内存模型设计之–指针压缩
指针压缩的目的:
- 为了保证CPU普通对象指针(oop)缓存
- 为了减少GC的发生,因为指针不压缩是8字节,这样在64位操作系统的堆上其他资源空间就少了。
64位操作系统中 内存 > 4G 默认开启指针压缩技术,内存**< 4G**,默认是32位系统默认不开启。
内存 > 32G 指针压缩失效。所以我们通常在部署服务时,JVM内存不要超过32G,因为超过32G就无法开启 指针压缩了。
内存 > 32G指针压缩失效的原因是:4G*8 = 32G
32位系统的CPU 最大支持2^32 = 4G ,如果是64位系统,最大支持 2^64, 但是对其填充是按照8字节进行填充,指针压缩可以理解为在32位系统在64位上面使用,因为32位系统的CPU寻址空间最大支持4G,对其填充*8 = 32G,这就是内存>32G指针压缩失效的原因。
关闭指针压缩 : -XX:-UseCompressedOops
2的32次方 4294967296字节 4G 如果现在老项目 32位操作系统 支持 4G以上的
PAE的特殊内核
我进行了指针压缩 4G 8字节对齐
内存模型设计之–对齐填充
对齐填充的意义是 提高CPU访问数据的效率 ,主要针对会存在该实例对象数据跨内存地址区域存储的情况。
例如:在没有对齐填充的情况下,内存地址存放情况如下:
因为处理器只能0x00-0x07,0x08-0x0F这样读取数据,所以当我们想获取这个long型的数据时,处理 器必须要读两次内存,第一次(0x00-0x07),第二次(0x08-0x0F),然后将两次的结果才能获得真正的数值。
那么在有对齐填充的情况下,内存地址存放情况是这样的:
现在处理器只需要直接一次读取(0x08-0x0F)的内存地址就可以获得我们想要的数据了。
当我们的策略为0时,这个时候我们的排序是 基本类型>填充字段>引用类型
当我们策略为1时,引用类型>基本类型>填充字段
策略为2时,父类中的引用类型跟子类中的引用类型放在一起 父类采用策略0 子类采用策略1,
这样操作可以降低空间的开销 ,
2.4 JVM内存模型
2.4.1 运行时数据区
上面对运行时数据区描述了很多,其实重点存储数据的是堆和方法区(非堆),所以内存的设计也着重从这两方面展开(注意这两块区域都是线程共享的)。
对于虚拟机栈,本地方法栈,程序计数器都是线程私有的。
可以这样理解,JVM运行时数据区是一种规范,而JVM内存模式是对该规范的实现
2.4.2 图形展示
一块是非堆区,一块是堆区
堆区分为两大块,一个是Old区,一个是Young区
Young区分为两大块,一个是Survivor区(S0+S1),一块是Eden区
S0和S1一样大,也可以叫From和To
2.4.3 对象创建过程
一般情况下,新创建的对象都会被分配到Eden区,一些特殊的大的对象会直接分配到Old区。
我是一个普通的Java对象,我出生在Eden区,在Eden区我还看到和我长的很像的小兄弟,我们在Eden区中玩了挺长时间。有一天Eden区中的人实在是太多了,我就被迫去了Survivor区的“From”区,自从去了Survivor区,我就开始漂了,有时候在Survivor的“From”区,有时候在Survivor的“To”区,居无定所。直到我18岁的时候,爸爸说我成人了,该去社会上闯闯了。于是我就去了年老代那边,年老代里,人很多,并且年龄都挺大的。
什么时候会触发Full GC?
1.之前每次晋升的对象的平均大小 > 老年代的剩余空间 基于历史平均水平
2.young GC之后 存活对象超过了老年代的剩余空间 基于下一次可能的剩余空间
3.Meta Space区域空间不足
4.System.gc();
方法区 类信息 静态变量 常量 即时编译过后的代码 运行时常量池
JDK1.7之前 Perm space 永久代 持久代 JVM自己的内存 线性整理 会增加垃圾回收的时间
JDK1.8 Meta Space 元空间 元数据区 直接内存 减少内存碎片 节省压缩时间
类的总数 常量池的大小 方法的数量 设置JVM内存 2G
1.动态扩容文章来源:https://www.toymoban.com/news/detail-623544.html
分配内存 1.7之前 线性分配文章来源地址https://www.toymoban.com/news/detail-623544.html
2.4.4 常见问题
- 如何理解Minor/Major/Full GC
Minor GC:新生代
Major GC:老年代
Full GC:新生代+老年代
- 为什么需要Survivor区?只有Eden不行吗?
如果没有Survivor,Eden区每进行一次Minor GC,存活的对象就会被送到老年代。
这样一来,老年代很快被填满,触发Major GC(因为Major GC一般伴随着Minor GC,也可以看做触发了Full GC)。
老年代的内存空间远大于新生代,进行一次Full GC消耗的时间比Minor GC长得多。
执行时间长有什么坏处?频发的Full GC消耗的时间很长,会影响大型程序的执行和响应速度。
可能你会说,那就对老年代的空间进行增加或者较少咯。
假如增加老年代空间,更多存活对象才能填满老年代。虽然降低Full GC频率,但是随着老年代空间加大,一旦发生Full GC,执行所需要的时间更长。
假如减少老年代空间,虽然Full GC所需时间减少,但是老年代很快被存活对象填满,Full GC频率增加。
所以Survivor的存在意义,就是减少被送到老年代的对象,进而减少Full GC的发生,Survivor的预筛选保证,只有经历16次Minor GC还能在新生代中存活的对象,才会被送到老年代。
- 为什么需要两个Survivor区?
最大的好处就是解决了碎片化。也就是说为什么一个Survivor区不行?第一部分中,我们知道了必须设置Survivor区。假设现在只有一个Survivor区,我们来模拟一下流程:
刚刚新建的对象在Eden中,一旦Eden满了,触发一次Minor GC,Eden中的存活对象就会被移动到Survivor区。这样继续循环下去,下一次Eden满了的时候,问题来了,此时进行Minor GC,Eden和Survivor各有一些存活对象,如果此时把Eden区的存活对象硬放到Survivor区,很明显这两部分对象所占有的内存是不连续的,也就导致了内存碎片化。
永远有一个Survivor space是空的,另一个非空的Survivor space无碎片。
- 新生代中Eden:S1:S2为什么是8:1:1?
新生代中的可用内存:复制算法用来担保的内存为9:1
可用内存中Eden:S1区为8:1
即新生代中Eden:S1:S2 = 8:1:1
现代的商业虚拟机都采用这种收集算法来回收新生代,IBM公司的专门研究表明,新生代中的对象大概98%是“朝生夕死”的
- 堆内存中都是线程共享的区域吗?
JVM默认为每个线程在Eden上开辟一个buffer区域,用来加速对象的分配,称之为TLAB,全称:Thread Local Allocation Buffer。
对象优先会在TLAB上分配,但是TLAB空间通常会比较小,如果对象比较大,那么还是在共享区域分配。
到了这里,关于四、JVM-对象内存模型的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!