Hive-数据倾斜

这篇具有很好参考价值的文章主要介绍了Hive-数据倾斜。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

在计算各省份的GMV时,有可能会发生数据倾斜,解决办法如下:文章来源地址https://www.toymoban.com/news/detail-623747.html

  1. 分组聚合
    1. 预聚合思想 map-side(预聚合在map里面)
    2. skew-groupby(多个reduce阶段进行汇总):先对倾斜的key加上随机数,均匀分发到不同的reduce,进行一次聚合,然后去掉随机数,再发到一个reduce进行聚合。
  2. 表与表的关联
    1. map-join:大表JOIN小表
    2. skew-join:如果检测到有key比较多的,那么单独开启一个mapjoin去计算,其他正常的使用common join
    3. 分桶join:大表JOIN大表
  3. 如何判断是key发生数据倾斜?
    1. limit
    2. table_sample 抽样函数

到了这里,关于Hive-数据倾斜的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • (15)Hive调优——数据倾斜的解决指南

    目录 前言 一、什么是数据倾斜 二、发生数据倾斜的表现 2.1 MapReduce任务 2.2 Spark任务 三、如何定位发生数据倾斜的代码 四、发生数据倾斜的原因 3.1 key分布不均匀 3.1.1 某些key存在大量相同值 3.1.2 存在大量异常值或空值 3.2 业务数据本身的特性 3.3 SQL语句本身就有数据倾斜

    2024年04月14日
    浏览(44)
  • hive/spark数据倾斜解决方案

    数据倾斜主要表现在,mapreduce程序执行时,reduce节点大部分执行完毕,但是有一个或者几个reduce节点运行很慢,导致整个程序的处理时间很长,这是因为某一个key的条数比其他key多很多(有时是百倍或者千倍之多),这条Key所在的reduce节点所处理的数据量比其他节点就大很多,

    2024年02月11日
    浏览(43)
  • Hive数据倾斜的原因以及常用解决方案

    在Hadoop平台的hive数据库进行开发的时候,数据倾斜也是比较容易遇到的问题,这边文章对数据倾斜的定义以及产生的原因、对应的解决方案进行学习。 数据倾斜:数据分布不均匀,造成数据大量的集中到一点,造成数据热点。主要表现为任务进度长时间维持在 99%或者 100%的

    2024年02月15日
    浏览(49)
  • Hive数据倾斜常见场景及解决方案(超全!!!)

    Hive数据倾斜常见问题和解决方案 目录 前言 一、Explain 二、数据倾斜 1.什么是数据倾斜?它的主要表现? 2.产生数据倾斜的常见原因 一.join时:首先是大表关联小表,容易发生数据倾斜 二.join时:空key过多,或者相同key过多 三.join时:不同数据类型关联产生数据倾斜 四.join时

    2024年02月03日
    浏览(43)
  • 万字解决Flink|Spark|Hive 数据倾斜

    此篇主要总结到Hive,Flink,Spark出现数据倾斜的表现,原因和解决办法。首先会让大家认识到不同框架或者计算引擎处理倾斜的方案。最后你会发现计算框架只是“异曲”,文末总结才是“同工之妙”。点击收藏与分享,工作和涨薪用得到!!! 数据倾斜最笼统概念就是数据的

    2024年02月03日
    浏览(43)
  • 【大数据之Hive】二十三、HQL语法优化之数据倾斜

      数据倾斜指参与计算的数据分布不均,即某个key或者某些key的数据量远超其他key,导致在shuffle阶段,大量相同key的数据被发往同一个Reduce,导致该Reduce所需的时间远超其他Reduce,成为整个任务的瓶颈。   Hive中的数据倾斜常出现在分组聚合和join操作的场景中 。   

    2024年02月16日
    浏览(52)
  • 基于MapReduce的Hive数据倾斜场景以及解决方案

    通常认为当所有的map task全部完成,并且99%的reduce task完成,只剩下一个或者少数几个reduce task一直在执行,这种情况下一般都是发生了数据倾斜。 即为在整个计算过程中,大量相同的key被分配到了同一个reduce任务上造成。Hive的数据倾斜本质上是MapReduce计算引擎的数据倾斜,

    2024年02月13日
    浏览(46)
  • 第十六章 Hive生产环境优化&数据倾斜解决方案

    Hive调优作用:在保证业务结果不变的前提下,降低资源的使用量,减少任务的执行时间。 1、调优须知 (1)对于大数据计算引擎来说:数据量大不是问题, 数据倾斜是个问题。 (2)Hive的复 杂HQL底层会转换成多个MapReduce Job并行或者串行执行 ,Job数比较多的作业运行效 率相

    2024年02月12日
    浏览(38)
  • 基于MapReduce的Hive数据倾斜场景以及调优方案

    通常认为当所有的map task全部完成,并且99%的reduce task完成,只剩下一个或者少数几个reduce task一直在执行,这种情况下一般都是发生了数据倾斜。 即为在整个计算过程中,大量相同的key被分配到了同一个reduce任务上造成。Hive的数据倾斜本质上是MapReduce计算引擎的数据倾斜,

    2024年02月12日
    浏览(47)
  • 【Hive_06】企业调优2(数据倾斜优化、HQL优化等)

    数据倾斜问题,通常是指参与计算的数据分布不均,即某个key或者某些key的数据量远超其他key,导致在shuffle阶段,大量相同key的数据被发往同一个Reduce,进而导致该Reduce所需的时间远超其他Reduce,成为整个任务的瓶颈。 比如对于一张表的province_id字段,其中99%的值都为1,则

    2024年01月16日
    浏览(40)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包