简介
cron一个用于管理定时任务的库,用 Go 实现 Linux 中crontab
这个命令的效果。之前我们也介绍过一个类似的 Go 库——gron。gron
代码小巧,用于学习是比较好的。但是它功能相对简单些,并且已经不维护了。如果有定时任务需求,还是建议使用cron
。
快速使用
文本代码使用 Go Modules。
创建目录并初始化:
$ mkdir cron && cd cron $ go mod init cron
安装cron
,目前最新稳定版本为 v3:
$ go get -u github.com/robfig/cron/v3
使用:
package main import ( "fmt" "time" "github.com/robfig/cron/v3" ) func main() { c := cron.New() c.AddFunc("@every 1s", func() { fmt.Println("tick every 1 second") }) c.Start() time.Sleep(time.Second * 5) }
使用非常简单,创建cron
对象,这个对象用于管理定时任务。
调用cron
对象的AddFunc()
方法向管理器中添加定时任务。AddFunc()
接受两个参数,参数 1 以字符串形式指定触发时间规则,参数 2 是一个无参的函数,每次触发时调用。@every 1s
表示每秒触发一次,@every
后加一个时间间隔,表示每隔多长时间触发一次。例如@every 1h
表示每小时触发一次,@every 1m2s
表示每隔 1 分 2 秒触发一次。time.ParseDuration()
支持的格式都可以用在这里。
调用c.Start()
启动定时循环。
注意一点,因为c.Start()
启动一个新的 goroutine 做循环检测,我们在代码最后加了一行time.Sleep(time.Second * 5)
防止主 goroutine 退出。
运行效果,每隔 1s 输出一行字符串:
$ go run main.go tick every 1 second tick every 1 second tick every 1 second tick every 1 second tick every 1 second
时间格式
与Linux 中crontab
命令相似,cron
库支持用 5 个空格分隔的域来表示时间。这 5 个域含义依次为:
-
Minutes
:分钟,取值范围[0-59]
,支持特殊字符* / , -
; -
Hours
:小时,取值范围[0-23]
,支持特殊字符* / , -
; -
Day of month
:每月的第几天,取值范围[1-31]
,支持特殊字符* / , - ?
; -
Month
:月,取值范围[1-12]
或者使用月份名字缩写[JAN-DEC]
,支持特殊字符* / , -
; -
Day of week
:周历,取值范围[0-6]
或名字缩写[JUN-SAT]
,支持特殊字符* / , - ?
。
注意,月份和周历名称都是不区分大小写的,也就是说SUN/Sun/sun
表示同样的含义(都是周日)。
特殊字符含义如下:
-
*
:使用*
的域可以匹配任何值,例如将月份域(第 4 个)设置为*
,表示每个月; -
/
:用来指定范围的步长,例如将小时域(第 2 个)设置为3-59/15
表示第 3 分钟触发,以后每隔 15 分钟触发一次,因此第 2 次触发为第 18 分钟,第 3 次为 33 分钟。。。直到分钟大于 59; -
,
:用来列举一些离散的值和多个范围,例如将周历的域(第 5 个)设置为MON,WED,FRI
表示周一、三和五; -
-
:用来表示范围,例如将小时的域(第 1 个)设置为9-17
表示上午 9 点到下午 17 点(包括 9 和 17); -
?
:只能用在月历和周历的域中,用来代替*
,表示每月/周的任意一天。
了解规则之后,我们可以定义任意时间:
-
30 * * * *
:分钟域为 30,其他域都是*
表示任意。每小时的 30 分触发; -
30 3-6,20-23 * * *
:分钟域为 30,小时域的3-6,20-23
表示 3 点到 6 点和 20 点到 23 点。3,4,5,6,20,21,22,23 时的 30 分触发; -
0 0 1 1 *
:1(第 4 个) 月 1(第 3 个) 号的 0(第 2 个) 时 0(第 1 个) 分触发。
记熟了这几个域的顺序,再多练习几次很容易就能掌握格式。熟悉规则了之后,就能熟练使用crontab
命令了。
func main() { c := cron.New() c.AddFunc("30 * * * *", func() { fmt.Println("Every hour on the half hour") }) c.AddFunc("30 3-6,20-23 * * *", func() { fmt.Println("On the half hour of 3-6am, 8-11pm") }) c.AddFunc("0 0 1 1 *", func() { fmt.Println("Jun 1 every year") }) c.Start() for { time.Sleep(time.Second) } }
预定义时间规则
为了方便使用,cron
预定义了一些时间规则:
-
@yearly
:也可以写作@annually
,表示每年第一天的 0 点。等价于0 0 1 1 *
; -
@monthly
:表示每月第一天的 0 点。等价于0 0 1 * *
; -
@weekly
:表示每周第一天的 0 点,注意第一天为周日,即周六结束,周日开始的那个 0 点。等价于0 0 * * 0
; -
@daily
:也可以写作@midnight
,表示每天 0 点。等价于0 0 * * *
; -
@hourly
:表示每小时的开始。等价于0 * * * *
。
例如:
func main() { c := cron.New() c.AddFunc("@hourly", func() { fmt.Println("Every hour") }) c.AddFunc("@daily", func() { fmt.Println("Every day on midnight") }) c.AddFunc("@weekly", func() { fmt.Println("Every week") }) c.Start() for { time.Sleep(time.Second) } }
上面代码只是演示用法,实际运行可能要等待非常长的时间才能有输出。
固定时间间隔
cron
支持固定时间间隔,格式为:
@every <duration>
含义为每隔duration
触发一次。<duration>
会调用time.ParseDuration()
函数解析,所以ParseDuration
支持的格式都可以。例如1h30m10s
。在快速开始部分,我们已经演示了@every
的用法了,这里就不赘述了。
时区
默认情况下,所有时间都是基于当前时区的。当然我们也可以指定时区,有 2 两种方式:
- 在时间字符串前面添加一个
CRON_TZ=
+ 具体时区,具体时区的格式在之前carbon的文章中有详细介绍。东京时区为Asia/Tokyo
,纽约时区为America/New_York
; - 创建
cron
对象时增加一个时区选项cron.WithLocation(location)
,location
为time.LoadLocation(zone)
加载的时区对象,zone
为具体的时区格式。或者调用已创建好的cron
对象的SetLocation()
方法设置时区。
示例:
func main() { nyc, _ := time.LoadLocation("America/New_York") c := cron.New(cron.WithLocation(nyc)) c.AddFunc("0 6 * * ?", func() { fmt.Println("Every 6 o'clock at New York") }) c.AddFunc("CRON_TZ=Asia/Tokyo 0 6 * * ?", func() { fmt.Println("Every 6 o'clock at Tokyo") }) c.Start() for { time.Sleep(time.Second) } }
Job接口
除了直接将无参函数作为回调外,cron
还支持Job
接口:
// cron.go type Job interface { Run() }
我们定义一个实现接口Job
的结构:
type GreetingJob struct { Name string } func (g GreetingJob) Run() { fmt.Println("Hello ", g.Name) }
调用cron
对象的AddJob()
方法将GreetingJob
对象添加到定时管理器中:
func main() { c := cron.New() c.AddJob("@every 1s", GreetingJob{"dj"}) c.Start() time.Sleep(5 * time.Second) }
运行效果:
$ go run main.go Hello dj Hello dj Hello dj Hello dj Hello dj
使用自定义的结构可以让任务携带状态(Name
字段)。
实际上AddFunc()
方法内部也调用了AddJob()
方法。首先,cron
基于func()
类型定义一个新的类型FuncJob
:
// cron.go type FuncJob func()
然后让FuncJob
实现Job
接口:
// cron.go func (f FuncJob) Run() { f() }
在AddFunc()
方法中,将传入的回调转为FuncJob
类型,然后调用AddJob()
方法:
func (c *Cron) AddFunc(spec string, cmd func()) (EntryID, error) { return c.AddJob(spec, FuncJob(cmd)) }
线程安全
cron
会创建一个新的 goroutine 来执行触发回调。如果这些回调需要并发访问一些资源、数据,我们需要显式地做同步。
自定义时间格式
cron
支持灵活的时间格式,如果默认的格式不能满足要求,我们可以自己定义时间格式。时间规则字符串需要cron.Parser
对象来解析。我们先来看看默认的解析器是如何工作的。
首先定义各个域:
// parser.go const ( Second ParseOption = 1 << iota SecondOptional Minute Hour Dom Month Dow DowOptional Descriptor )
除了Minute/Hour/Dom(Day of month)/Month/Dow(Day of week)
外,还可以支持Second
。相对顺序都是固定的:
// parser.go var places = []ParseOption{ Second, Minute, Hour, Dom, Month, Dow, } var defaults = []string{ "0", "0", "0", "*", "*", "*", }
默认的时间格式使用 5 个域。
我们可以调用cron.NewParser()
创建自己的Parser
对象,以位格式传入使用哪些域,例如下面的Parser
使用 6 个域,支持Second
(秒):
parser := cron.NewParser( cron.Second | cron.Minute | cron.Hour | cron.Dom | cron.Month | cron.Dow | cron.Descriptor, )
调用cron.WithParser(parser)
创建一个选项传入构造函数cron.New()
,使用时就可以指定秒了:
c := cron.New(cron.WithParser(parser)) c.AddFunc("1 * * * * *", func () { fmt.Println("every 1 second") }) c.Start()
这里时间格式必须使用 6 个域,顺序与上面的const
定义一致。
因为上面的时间格式太常见了,cron
定义了一个便捷的函数:
// option.go func WithSeconds() Option { return WithParser(NewParser( Second | Minute | Hour | Dom | Month | Dow | Descriptor, )) }
注意Descriptor
表示对@every/@hour
等的支持。有了WithSeconds()
,我们不用手动创建Parser
对象了:
c := cron.New(cron.WithSeconds())
选项
cron
对象创建使用了选项模式,我们前面已经介绍了 3 个选项:
-
WithLocation
:指定时区; -
WithParser
:使用自定义的解析器; -
WithSeconds
:让时间格式支持秒,实际上内部调用了WithParser
。
cron
还提供了另外两种选项:
-
WithLogger
:自定义Logger
; -
WithChain
:Job 包装器。
WithLogger
WithLogger
可以设置cron
内部使用我们自定义的Logger
:
func main() { c := cron.New( cron.WithLogger( cron.VerbosePrintfLogger(log.New(os.Stdout, "cron: ", log.LstdFlags)))) c.AddFunc("@every 1s", func() { fmt.Println("hello world") }) c.Start() time.Sleep(5 * time.Second) }
上面调用cron.VerbosPrintfLogger()
包装log.Logger
,这个logger
会详细记录cron
内部的调度过程:
$ go run main.go cron: 2020/06/26 07:09:14 start cron: 2020/06/26 07:09:14 schedule, now=2020-06-26T07:09:14+08:00, entry=1, next=2020-06-26T07:09:15+08:00 cron: 2020/06/26 07:09:15 wake, now=2020-06-26T07:09:15+08:00 cron: 2020/06/26 07:09:15 run, now=2020-06-26T07:09:15+08:00, entry=1, next=2020-06-26T07:09:16+08:00 hello world cron: 2020/06/26 07:09:16 wake, now=2020-06-26T07:09:16+08:00 cron: 2020/06/26 07:09:16 run, now=2020-06-26T07:09:16+08:00, entry=1, next=2020-06-26T07:09:17+08:00 hello world cron: 2020/06/26 07:09:17 wake, now=2020-06-26T07:09:17+08:00 cron: 2020/06/26 07:09:17 run, now=2020-06-26T07:09:17+08:00, entry=1, next=2020-06-26T07:09:18+08:00 hello world cron: 2020/06/26 07:09:18 wake, now=2020-06-26T07:09:18+08:00 hello world cron: 2020/06/26 07:09:18 run, now=2020-06-26T07:09:18+08:00, entry=1, next=2020-06-26T07:09:19+08:00 cron: 2020/06/26 07:09:19 wake, now=2020-06-26T07:09:19+08:00 hello world cron: 2020/06/26 07:09:19 run, now=2020-06-26T07:09:19+08:00, entry=1, next=2020-06-26T07:09:20+08:0
我们看看默认的Logger
是什么样的:
// logger.go var DefaultLogger Logger = PrintfLogger(log.New(os.Stdout, "cron: ", log.LstdFlags)) func PrintfLogger(l interface{ Printf(string, ...interface{}) }) Logger { return printfLogger{l, false} } func VerbosePrintfLogger(l interface{ Printf(string, ...interface{}) }) Logger { return printfLogger{l, true} } type printfLogger struct { logger interface{ Printf(string, ...interface{}) } logInfo bool }
WithChain
Job 包装器可以在执行实际的Job
前后添加一些逻辑:
- 捕获
panic
; - 如果
Job
上次运行还未结束,推迟本次执行; - 如果
Job
上次运行还未介绍,跳过本次执行; - 记录每个
Job
的执行情况。
我们可以将Chain
类比为 Web 处理器的中间件。实际上就是在Job
的执行逻辑外在封装一层逻辑。我们的封装逻辑需要写成一个函数,传入一个Job
类型,返回封装后的Job
。cron
为这种函数定义了一个类型JobWrapper
:
// chain.go type JobWrapper func(Job) Job
然后使用一个Chain
对象将这些JobWrapper
组合到一起:
type Chain struct { wrappers []JobWrapper } func NewChain(c ...JobWrapper) Chain { return Chain{c} }
调用Chain
对象的Then(job)
方法应用这些JobWrapper
,返回最终的`Job:
func (c Chain) Then(j Job) Job { for i := range c.wrappers { j = c.wrappers[len(c.wrappers)-i-1](j) } return j }
注意应用JobWrapper
的顺序。
内置JobWrapper
cron
内置了 3 个用得比较多的JobWrapper
:
-
Recover
:捕获内部Job
产生的 panic; -
DelayIfStillRunning
:触发时,如果上一次任务还未执行完成(耗时太长),则等待上一次任务完成之后再执行; -
SkipIfStillRunning
:触发时,如果上一次任务还未完成,则跳过此次执行。
下面分别介绍。
Recover
先看看如何使用:
type panicJob struct { count int } func (p *panicJob) Run() { p.count++ if p.count == 1 { panic("oooooooooooooops!!!") } fmt.Println("hello world") } func main() { c := cron.New() c.AddJob("@every 1s", cron.NewChain(cron.Recover(cron.DefaultLogger)).Then(&panicJob{})) c.Start() time.Sleep(5 * time.Second) }
panicJob
在第一次触发时,触发了panic
。因为有cron.Recover()
保护,后续任务还能执行:
go run main.go cron: 2020/06/27 14:02:00 panic, error=oooooooooooooops!!!, stack=... goroutine 18 [running]: github.com/robfig/cron/v3.Recover.func1.1.1(0x514ee0, 0xc0000044a0) D:/code/golang/pkg/mod/github.com/robfig/cron/v3@v3.0.1/chain.go:45 +0xbc panic(0x4cf380, 0x513280) C:/Go/src/runtime/panic.go:969 +0x174 main.(*panicJob).Run(0xc0000140e8) D:/code/golang/src/github.com/darjun/go-daily-lib/cron/recover/main.go:17 +0xba github.com/robfig/cron/v3.Recover.func1.1() D:/code/golang/pkg/mod/github.com/robfig/cron/v3@v3.0.1/chain.go:53 +0x6f github.com/robfig/cron/v3.FuncJob.Run(0xc000070390) D:/code/golang/pkg/mod/github.com/robfig/cron/v3@v3.0.1/cron.go:136 +0x2c github.com/robfig/cron/v3.(*Cron).startJob.func1(0xc00005c0a0, 0x514d20, 0xc000070390) D:/code/golang/pkg/mod/github.com/robfig/cron/v3@v3.0.1/cron.go:312 +0x68 created by github.com/robfig/cron/v3.(*Cron).startJob D:/code/golang/pkg/mod/github.com/robfig/cron/v3@v3.0.1/cron.go:310 +0x7a hello world hello world hello world hello world
我们看看cron.Recover()
的实现,很简单:
// cron.go func Recover(logger Logger) JobWrapper { return func(j Job) Job { return FuncJob(func() { defer func() { if r := recover(); r != nil { const size = 64 << 10 buf := make([]byte, size) buf = buf[:runtime.Stack(buf, false)] err, ok := r.(error) if !ok { err = fmt.Errorf("%v", r) } logger.Error(err, "panic", "stack", "...\n"+string(buf)) } }() j.Run() }) } }
就是在执行内层的Job
逻辑前,添加recover()
调用。如果Job.Run()
执行过程中有panic
。这里的recover()
会捕获到,输出调用堆栈。
DelayIfStillRunning
还是先看如何使用:
type delayJob struct { count int } func (d *delayJob) Run() { time.Sleep(2 * time.Second) d.count++ log.Printf("%d: hello world\n", d.count) } func main() { c := cron.New() c.AddJob("@every 1s", cron.NewChain(cron.DelayIfStillRunning(cron.DefaultLogger)).Then(&delayJob{})) c.Start() time.Sleep(10 * time.Second) }
上面我们在Run()
中增加了一个 2s 的延迟,输出中间隔变为 2s,而不是定时的 1s:
$ go run main.go 2020/06/27 14:11:16 1: hello world 2020/06/27 14:11:18 2: hello world 2020/06/27 14:11:20 3: hello world 2020/06/27 14:11:22 4: hello world
看看源码:
// chain.go func DelayIfStillRunning(logger Logger) JobWrapper { return func(j Job) Job { var mu sync.Mutex return FuncJob(func() { start := time.Now() mu.Lock() defer mu.Unlock() if dur := time.Since(start); dur > time.Minute { logger.Info("delay", "duration", dur) } j.Run() }) } }
首先定义一个该任务共用的互斥锁sync.Mutex
,每次执行任务前获取锁,执行结束之后释放锁。所以在上一个任务结束前,下一个任务获取锁是无法成功的,从而保证的任务的串行执行。
SkipIfStillRunning
还是先看看如何使用:
type skipJob struct { count int32 } func (d *skipJob) Run() { atomic.AddInt32(&d.count, 1) log.Printf("%d: hello world\n", d.count) if atomic.LoadInt32(&d.count) == 1 { time.Sleep(2 * time.Second) } } func main() { c := cron.New() c.AddJob("@every 1s", cron.NewChain(cron.SkipIfStillRunning(cron.DefaultLogger)).Then(&skipJob{})) c.Start() time.Sleep(10 * time.Second) }
输出:
$ go run main.go 2020/06/27 14:22:07 1: hello world 2020/06/27 14:22:10 2: hello world 2020/06/27 14:22:11 3: hello world 2020/06/27 14:22:12 4: hello world 2020/06/27 14:22:13 5: hello world 2020/06/27 14:22:14 6: hello world 2020/06/27 14:22:15 7: hello world 2020/06/27 14:22:16 8: hello world
注意观察时间,第一个与第二个输出之间相差 3s,因为跳过了两次执行。
注意DelayIfStillRunning
与SkipIfStillRunning
是有本质上的区别的,前者DelayIfStillRunning
只要时间足够长,所有的任务都会按部就班地完成,只是可能前一个任务耗时过长,导致后一个任务的执行时间推迟了一点。SkipIfStillRunning
会跳过一些执行。
看看源码:
func SkipIfStillRunning(logger Logger) JobWrapper { return func(j Job) Job { var ch = make(chan struct{}, 1) ch <- struct{}{} return FuncJob(func() { select { case v := <-ch: j.Run() ch <- v default: logger.Info("skip") } }) } }
定义一个该任务共用的缓存大小为 1 的通道chan struct{}
。执行任务时,从通道中取值,如果成功,执行,否则跳过。执行完成之后再向通道中发送一个值,确保下一个任务能执行。初始发送一个值到通道中,保证第一个任务的执行。文章来源:https://www.toymoban.com/news/detail-623774.html
总结
cron
实现比较小巧,且优雅,代码行数也不多,非常值得一看!文章来源地址https://www.toymoban.com/news/detail-623774.html
到了这里,关于golang定时任务库cron实践的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!