opencv-34 图像平滑处理-2D 卷积 cv2.filter2D()

这篇具有很好参考价值的文章主要介绍了opencv-34 图像平滑处理-2D 卷积 cv2.filter2D()。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

2D卷积是一种图像处理和计算机视觉中常用的操作,用于在图像上应用滤波器或卷积核,从而对图像进行特征提取、平滑处理或边缘检测等操作。

在2D卷积中,图像和卷积核都是二维的矩阵或数组。卷积操作将卷积核在图像上滑动,对每个局部区域进行元素级别的乘法和累加操作,得到输出图像的对应位置的像素值。

OpenCV 提供了多种滤波方式,来实现平滑图像的效果,例如均值滤波、方框滤波、高斯滤波、中值滤波等。大多数滤波方式所使用的卷积核都具有一定的灵活性,能够方便地设置卷积核的大小和数值。但是,我们有时希望使用特定的卷积核实现卷积操作,例如使用如下卷积核进行卷积操作。

opencv-34 图像平滑处理-2D 卷积 cv2.filter2D(),opencv,计算机视觉,opencv,人工智能,计算机视觉
前面介绍过的滤波函数都无法将卷积核确定为上述形式,这时要使用 OpenCV 的自定义卷积函数。
在 OpenCV 中,允许用户自定义卷积核实现卷积操作,使用自定义卷积核实现卷积操作的函数是 cv2.filter2D(),其语法格式为:

dst = cv2.filter2D( src, ddepth, kernel, anchor, delta, borderType )

式中:

  1. dst 是返回值,表示进行方框滤波后得到的处理结果。
  2. src 是需要处理的图像,即原始图像。它能够有任意数量的通道,并能对各个通道独立
    处理。图像深度应该是 CV_8U、CV_16U、CV_16S、CV_32F 或者 CV_64F 中的一种。
  3. ddepth 是处理结果图像的图像深度,一般使用-1 表示与原始图像使用相同的图像深度。
  4. kernel 是卷积核,是一个单通道的数组。如果想在处理彩色图像时,让每个通道使用不同的核,则必须将彩色图像分解后使用不同的核完成操作。
  5. anchor 是锚点,其默认值是(-1, -1),表示当前计算均值的点位于核的中心点位置。该值使用默认值即可,在特殊情况下可以指定不同的点作为锚点。
  6. delta 是修正值,它是可选项。如果该值存在,会在基础滤波的结果上加上该值作为最终的滤波处理结果。
  7. borderType 是边界样式,该值决定了以何种情况处理边界,通常使用默认值即可。

在通常情况下,使用滤波函数 cv2.filter2D()时,对于参数锚点 anchor、修正值 delta、边界样式 borderType,直接采用其默认值即可。因此,函数 cv2.filter2D()的常用形式为:

dst = cv2.filter2D( src, ddepth, kernel )

示例:

自定义一个卷积核,通过函数 cv2.filter2D()应用该卷积核对图像进行滤波操作,并显示滤波结果。

设计一个 9×9 大小的卷积核,让卷积核内所有权重值相等,如下所示:

opencv-34 图像平滑处理-2D 卷积 cv2.filter2D(),opencv,计算机视觉,opencv,人工智能,计算机视觉
借助 numpy 库中的 ones()函数即可创建该卷积核,具体的语句为:

kernel = np.ones((9,9),np.float32)/81

综上所述,程序设计代码如下:

import cv2
import numpy as np
o=cv2.imread("lena.png")
kernel = np.ones((9,9),np.float32)/81
r = cv2.filter2D(o,-1,kernel)
cv2.imshow("original",o)
cv2.imshow("Gaussian",r)
cv2.waitKey()
cv2.destroyAllWindows()

运行结果
opencv-34 图像平滑处理-2D 卷积 cv2.filter2D(),opencv,计算机视觉,opencv,人工智能,计算机视觉
当然,本例中使用的卷积核比较简单,该滤波操作与直接使用均值滤波语句“r=cv2.blur(o,(5,5))”的效果是一样的。在实际应用中,可以定义更复杂的卷积核实现自定义滤波操作。文章来源地址https://www.toymoban.com/news/detail-624038.html

到了这里,关于opencv-34 图像平滑处理-2D 卷积 cv2.filter2D()的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • opencv 31-图像平滑处理-方框滤波cv2.boxFilter()

    方框滤波(Box Filtering)是一种简单的图像平滑处理方法,它主要用于去除图像中的噪声和减少细节,同时保持图像的整体亮度分布。 方框滤波的原理很简单:对于图像中的每个像素,将其周围的一个固定大小的邻域内的像素值取平均,然后将这个平均值赋值给当前像素。这

    2024年02月14日
    浏览(46)
  • opencv 30 -图像平滑处理01-均值滤波 cv2.blur()

    图像平滑处理(Image Smoothing)是一种图像处理技术,旨在减少图像中的噪声、去除细节并平滑图像的过渡部分。这种处理常用于预处理图像,以便在后续图像处理任务中获得更好的结果。 常用的图像平滑处理方法包括: 均值滤波(Mean Filtering) :用图像中像素周围区域的平

    2024年02月01日
    浏览(56)
  • opencv(15) 图像平滑处理之二:cv2.GaussianBlur()高斯滤波

    高斯滤波是一种线性平滑滤波,适用于消除高斯噪声,广泛应用于图像处理的减噪过程。 高斯模板是通过对二维高斯函数进行采样(高斯模糊的卷积核里的数值满足高斯分布)、量化并归一化得到的,它考虑了邻域像素位置的影响,距离当前被平滑像素越近的点,加权系数越大

    2024年02月10日
    浏览(57)
  • 【C++】【Opencv】cv::GaussianBlur、cv::filter2D()函数详解和示例

    本文通过函数详解和运行示例对cv::GaussianBlur和cv::filter2D()两个函数进行解读,最后综合了两个函数的关系和区别,以帮助大家理解和使用。 cv::GaussianBlur 是 OpenCV 库中的一个函数,用于对图像进行高斯模糊。高斯模糊是一种常见的图像降噪技术,它通过使用高斯函数对图像进

    2024年02月04日
    浏览(41)
  • 我在Vscode学OpenCV 图像处理四(轮廓查找 cv2.findContours() cv2.drawContours())-- 待补充

    在OpenCV中,边缘检测和轮廓查找是两个不同的图像处理任务,它们有不同的目标和应用。 1.1.1 边缘检测: 定义: 边缘检测是指寻找图像中灰度级别变化明显的地方,即图像中物体之间的界限。这些变化通常表示图像中的边缘或轮廓。 方法: 常用的边缘检测算法包括Sobel、

    2024年02月03日
    浏览(61)
  • python --opencv图像处理滤波详解(均值滤波、2D 图像卷积、方框滤波、 高斯滤波、中值滤波、双边滤波)

    第一件事情还是先做名词解释,图像平滑到底是个啥? 从字面意思理解貌似图像平滑好像是在说图像滑动。 emmmmmmmmmmmmmmm。。。。 其实半毛钱关系也没有,图像平滑技术通常也被成为图像滤波技术(这个名字看到可能大家会有点感觉)。 每一幅图像都包含某种程度的噪声,

    2024年02月04日
    浏览(64)
  • 【OpenCV】仿射变换中cv2.estimateAffine2D 的原理

    目录 一、介绍 二、仿射变换矩阵 (M) 1.M中六个元素的说明 2.计算旋转角度 3.M的计算过程 三、输出状态 (inliers) 四、错切参数 1.错切参数的定义 2.错切参数例子 (1)水平错切 (2)垂直错切         cv2.estimateAffine2D 是 OpenCV 库中的一个函数,用于估计两个二维点集之间的

    2024年02月04日
    浏览(47)
  • opencv图像旋转和翻转,cv2.flip,cv2.rotate

    目录 翻转图像 图像旋转         opencv中使用cv2.filp可以实现图像翻转 src:输入图像 flipCode:flipCode 一个标志来指定如何翻转数组;0表示上下翻转,正数表示左右翻转,负数表示上下左右都翻转。 dst:输出图像         下面代码对图像进行不同旋转。         opencv中使

    2024年02月15日
    浏览(78)
  • opencv图像仿射变换,cv2.warpAffine

    目录 仿射变换原理介绍 cv2.warpAffine函数介绍 代码实例          仿射变换 ,又称 仿射映射 ,是指在几何中,一个向量空间进行一次线性变换并接上一个平移,变换为另一个向量空间。         在有限维的情况,每个仿射变换可以由一个矩阵A和一个向量b给出,它可以写

    2024年02月05日
    浏览(69)
  • opencv(4): cv2.imwrite()图像的保存

    语法格式:retval = cv2.imwrite(filename, image [, paras]) 参数说明: filename :代表文件名的字符串。文件名必须包含图像格式,例如.jpg,.png等。 image :图像数据矩阵 paras: 不同编码格式的参数,可选项 cv2.CV_IMWRITE_JPEG_QUALITY :设置 .jpeg/.jpg 格式的图片质量,取值为 0-100(默认值 95)

    2024年02月01日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包