python多进程编程常用到的方法

这篇具有很好参考价值的文章主要介绍了python多进程编程常用到的方法。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

python中的多线程其实并不是真正的多线程,如果想要充分地使用多核CPU资源,在python中大部分情况需要使用多进程。

python提供了非常好用的多进程包Multiprocessing,只需要定义一个函数,python会完成其它所有事情。借助这个包,可以轻松完成从单进程到并发执行的转换。

multiprocessing支持子进程、通信和共享数据、执行不同形式的同步,提供了Process、Queue、Pipe、LocK等组件

一、Process

语法:Process([group[,target[,name[,args[,kwargs]]]]])

参数含义:target表示调用对象;args表示调用对象的位置参数元祖;kwargs表示调用对象的字典。name为别名,groups实际上不会调用。

方法:

is_alive():
join(timeout):
run():
start():
terminate():

属性:authkey、daemon(要通过start()设置)、exitcode(进程在运行时为None、如果为-N,表示被信号N结束)、name、pid。其中daemon是父进程终止后自动终止,且自己不能产生新的进程,必须在start()之前设置。

1.创建函数,并将其作为单个进程

from multiprocessing import Process
def func(name):
    print("%s曾经是好人"%name)

if __name__ == "__main__":
    p = Process(target=func,args=('kebi',))
    p.start()   #start()通知系统开启这个进程

2.创建函数并将其作为多个进程

from multiprocessing import Process
import random,time

def hobby_motion(name):
    print('%s喜欢运动'% name)
    time.sleep(random.randint(1,3))

def hobby_game(name):
    print('%s喜欢游戏'% name)
    time.sleep(random.randint(1,3))

if __name__ == "__main__":
    p1 = Process(target=hobby_motion,args=('小明',))
    p2 = Process(target=hobby_game,args=('张三',))
    p1.start()
    p2.start()

执行结果:

小明喜欢运动
张三喜欢游戏

3.将进程定义为类(开启进程的另一种方法,并不是很常用)

from multiprocessing import Process
class MyProcess(Process):
    def __init__(self,name):
        super().__init__()
        self.name = name

    def run(self):  #start()时,run自动调用,而且此处只能定义为run。
        print("%s曾经是好人"%self.name)

if __name__ == "__main__":
    p = MyProcess('kebi')
    p.start()  #将Process当作父类,并且自定义一个函数。

4.daemon程序对比效果

不加daemon属性

import time
def func(name):
    print("work start:%s"% time.ctime())
    time.sleep(2)
    print("work end:%s"% time.ctime())

if __name__ == "__main__":
    p = Process(target=func,args=('kebi',))
    p.start()
    print("this is over")

#执行结果
this is over
work start:Thu Nov 30 16:12:00 2017
work end:Thu Nov 30 16:12:02 2017

加上daemon属性

from multiprocessing import Process
import time
def func(name):
    print("work start:%s"% time.ctime())
    time.sleep(2)
    print("work end:%s"% time.ctime())

if __name__ == "__main__":
    p = Process(target=func,args=('kebi',))
    p.daemon = True   #父进程终止后自动终止,不能产生新进程,必须在start()之前设置
    p.start()
    print("this is over")

#执行结果
this is over

设置了daemon属性又想执行完的方法:

import time
def func(name):
    print("work start:%s"% time.ctime())
    time.sleep(2)
    print("work end:%s"% time.ctime())

if __name__ == "__main__":
    p = Process(target=func,args=('kebi',))
    p.daemon = True
    p.start()
    p.join()  #执行完前面的代码再执行后面的
    print("this is over")

#执行结果
work start:Thu Nov 30 16:18:39 2017
work end:Thu Nov 30 16:18:41 2017
this is over

5.join():上面的代码执行完毕之后,才会执行后i面的代码。

先看一个例子:

from multiprocessing import Process
import time,os,random
def func(name,hour):
    print("A lifelong friend:%s,%s"% (name,os.getpid()))
    time.sleep(hour)
    print("Good bother:%s"%name)

if __name__ == "__main__":
    p = Process(target=func,args=('kebi',2))
    p1 = Process(target=func,args=('maoxian',1))
    p2 = Process(target=func,args=('xiaoniao',3))
    p.start()
    p1.start()
    p2.start()
    print("this is over")

执行结果:
this is over   #最后执行,最先打印,说明start()只是开启进程,并不是说一定要执行完
A lifelong friend:kebi,12048
A lifelong friend:maoxian,8252
A lifelong friend:xiaoniao,6068
Good bother:maoxian   #最先打印,第二位执行
Good bother:kebi     
Good bother:xiaoniao

添加join()

from multiprocessing import Process
import time,os,random
def func(name,hour):
    print("A lifelong friend:%s,%s"% (name,os.getpid()))
    time.sleep(hour)
    print("Good bother:%s"%name)
start = time.time()
if __name__ == "__main__":
    p = Process(target=func,args=('kebi',2))
    p1 = Process(target=func,args=('maoxian',1))
    p2 = Process(target=func,args=('xiaoniao',3))
    p.start()
    p.join()   #上面的代码执行完毕之后,再执行后面的
    p1.start()
    p1.join()
    p2.start()
    p2.join()
    print("this is over")
    print(time.time() - start)

#执行结果
A lifelong friend:kebi,14804
Good bother:kebi
A lifelong friend:maoxian,11120
Good bother:maoxian
A lifelong friend:xiaoniao,10252  #每个进程执行完了,才会执行下一个
Good bother:xiaoniao
this is over
6.497815370559692   #2+1+3+主程序执行时间

改变一下位置文章来源地址https://www.toymoban.com/news/detail-624217.html

from multiprocessing import Process
import time,os,random
def func(name,hour):
    print("A lifelong friend:%s,%s"% (name,os.getpid()))
    time.sleep(hour)
    print("Good bother:%s"%name)
start = time.time()
if __name__ == "__main__":
    p = Process(target=func,args=('kebi',2))
    p1 = Process(target=func,args=('maoxian',1))
    p2 = Process(target=func,args=('xiaoniao',3))
    p.start()
    p1.start()
    p2.start()
    p.join()   #需要2秒
    p1.join()  #到这时已经执行完
    p2.join()   #已经执行了2秒,还要1秒
    print("this is over")
    print(time.time() - start)

#执行结果
#Python小白学习交流群:711312441
A lifelong friend:kebi,13520
A lifelong friend:maoxian,11612
A lifelong friend:xiaoniao,17064  #几乎是同时开启执行
Good bother:maoxian
Good bother:kebi
Good bother:xiaoniao
this is over
3.273620367050171  #以最长时间的为主

6.其它属性和方法

from multiprocessing import Process
import time
def func(name):
    print("work start:%s"% time.ctime())
    time.sleep(2)
    print("work end:%s"% time.ctime())

if __name__ == "__main__":
    p = Process(target=func,args=('kebi',))
    p.start()
    p.terminate()  #将进程杀死,而且必须放在start()后面,与daemon的功能类似

#执行结果
this is over
from multiprocessing import Process
import time
def func(name):
    print("work start:%s"% time.ctime())
    time.sleep(2)
    print("work end:%s"% time.ctime())

if __name__ == "__main__":
    p = Process(target=func,args=('kebi',))
    # p.daemon = True
    print(p.is_alive())
    p.start()
    print(p.name)   #获取进程的名字
    print(p.pid)    #获取进程的pid
    print(p.is_alive())  #判断进程是否存在
    print("this is over")

到了这里,关于python多进程编程常用到的方法的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • python多进程编程(模式与锁)

    fork,【拷贝几乎所有资源】【支持文件对象/线程锁等传参】【unix】【任意位置开始】【快】 spawn,【run参数传参必备资源】【不支持文件对象/线程锁等传参】【unix、win】【main代码块开始】【慢】 forkserver,【run参数传必备资源】【不支持文件对象/线程锁传参】【部分uni

    2024年02月15日
    浏览(33)
  • python-16-线程池和进程池python并发编程

    Python ThreadPoolExecutor线程池 线程池的基本原理是什么? 利用Python快速实现一个线程池,非常简单 Python并发编程专题 一、为什么要引入并发编程? 场景1:一个网络爬虫,按顺序爬取花了1小时,采用并发下载减少到20分钟! 场景2:一个APP应用,优化前每次打开页面需要3秒,采

    2024年02月04日
    浏览(39)
  • 《Linux操作系统编程》 第六章 Linux中的进程监控: fork函数的使用,以及父子进程间的关系,掌握exec系列函数

    🌷🍁 博主 libin9iOak带您 Go to New World.✨🍁 🦄 个人主页——libin9iOak的博客🎐 🐳 《面试题大全》 文章图文并茂🦕生动形象🦖简单易学!欢迎大家来踩踩~🌺 🌊 《IDEA开发秘籍》学会IDEA常用操作,工作效率翻倍~💐 🪁🍁 希望本文能够给您带来一定的帮助🌸文章粗浅,敬

    2024年02月11日
    浏览(37)
  • Python渗透测试编程基础——线程、进程与协程

    目录  一、进程与线程的概念 1.进程 2.线程 3.进程和线程的关系 4.任务执行方式 二、Python中的Threading模块 1.线程模块介绍 2.Threading介绍 (1)方法和属性 (2)类方法 三、线程简单编写 1.流程 2.创建线程 (1)方法一 (2)方法二 3.例子 四、守护线程 五、线程同步技术 1.线程

    2024年02月01日
    浏览(50)
  • Python标准库 subprocess 模块多进程编程详解

    subprocess 模块,允许生成新的进程执行命令行指令,python程序,以及其它语言编写的应用程序, 如 java, c++,rust 应用等。 subprocess可连接多个进程的输入、输出、错误管道,并且获取它们的返回码。 asyncio也支持subprocess. 许多知名库都在使用此模块创建进程,以及做为跨语言粘合

    2024年02月02日
    浏览(36)
  • 由浅入深走进Python异步编程【多进程】(含代码实例讲解 || multiprocessing、异步进程池、进程通信)

    从底层到第三方库,全面讲解python的异步编程。这节讲述的是python的多线程实现,纯干货,无概念,代码实例讲解。 本系列有6章左右,点击头像或者专栏查看更多内容,陆续更新,欢迎关注。 部分资料来源及参考链接: https://www.bilibili.com/video/BV1Li4y1j7RY/ 现在让我们初步进入

    2024年02月03日
    浏览(48)
  • 【Python】多线程编程 ① ( 线程相关概念 | 进程 | 线程 | 协程 / 纤程 | 管程 )

    进程 与 操作系统 : 进程 是 操作系统 中 能够独立运行的单元 , 是 操作系统 对 正在运行的 应用程序 的 抽象结构 描述 ; 操作系统 中 运行的每个 应用程序 就是一个进程 ; 一个操作系统中可以运行 多个 进程 ; 每个 应用程序 都会被 操作系统 分配一个 进程 ID ; 多个进程之间

    2024年02月15日
    浏览(38)
  • python进程池中的回调函数

    指定一个任务后、并且指定一个回调函数后,当指定的进程池执行的任务结束后,会将该任务的返回值作为回调函数的参数传递到回调函数中,并且回调函数得以执行 回调函数在主进程中被执行 10个任务func1投入到含有4个进程的进程池中异步执行,并且指定回调函数为func2,

    2023年04月15日
    浏览(29)
  • < Python全景系列-5 > 解锁Python并发编程:多线程和多进程的神秘面纱揭晓

    欢迎来到我们的系列博客《Python全景系列》!在这个系列中,我们将带领你从Python的基础知识开始,一步步深入到高级话题,帮助你掌握这门强大而灵活的编程语法。无论你是编程新手,还是有一定基础的开发者,这个系列都将提供你需要的知识和技能。   这是本系列的第五

    2024年02月05日
    浏览(38)
  • 一文详解Python中多进程和进程池的使用方法

    这篇文章将介绍Python中多进程和进程池的使用方法,并提供一些实用的案例供大家参考,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一下 目录 Python是一种高级编程语言,它在众多编程语言中,拥有极高的人气和使用率。Python中的多进程和进程池是其强大的功能之一

    2023年04月24日
    浏览(32)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包