动态规划-斐波那契数

这篇具有很好参考价值的文章主要介绍了动态规划-斐波那契数。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


斐波那契数是一个很好的熟悉和理解动态规划的例子,通过斐波那契数可以更好的理解动态规划的精髓,动态规划是后面的计算是如何借助于前面的计算结果来加快计算速度的。

斐波那契数和斐波那契数列其实可以看成是一道题,只不过两题的限制性条件稍微有差别

1 斐波那契数

1.1 斐波那契数

斐波那契数 (通常用 F(n) 表示)形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是:

F(0) = 0,F(1) = 1
F(n) = F(n - 1) + F(n - 2),其中 n > 1
给定 n ,请计算 F(n) 。

1.2 示例

1.2.1 示例 1:

输入:n = 2
输出:1
解释:F(2) = F(1) + F(0) = 1 + 0 = 1

1.2.2 示例 2:

输入:n = 3
输出:2
解释:F(3) = F(2) + F(1) = 1 + 1 = 2

1.2.3 示例 3:

输入:n = 4
输出:3
解释:F(4) = F(3) + F(2) = 2 + 1 = 3

1.2.4 提示:

0 <= n <= 30

来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/fibonacci-number
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

# 1.3 解题思路和方法

1.3.1 解题思路

如题目所说的,斐波那契数是最终是要获得f[n]的斐波那契数。
其算法转换方程如下:
F(0) = 0,F(1) = 1 /* 动态规划的边界条件 /
F(n) = F(n - 1) + F(n - 2),其中 n > 1 /
动态规划的转移方程 */

1.3.2 代码实现

  • if (n < 2) 判断当前要处理的斐波那契数的id,依次来判断是做什么处理,如果是小于2,则直接依据边界条件的处理返回其值即可
  • 如果n >= 2,则依据斐波那契数的转换方程去做处理 F(n) = F(n - 1) + F(n - 2)
class Solution {
public:
    int fib(int n) {
        if (n < 2) {
            return n;
        }
        vector<int> f(n + 1);

        f[0] = 0;
        f[1] = 1;

        for (int i = 2; i <= n; i++) {
            f[i] = f[i - 1] + f[i - 2];
        }

        return f[n];
    }
};

2 剑指 Offer 10- I. 斐波那契数列

2.1 斐波那契数列

写一个函数,输入 n ,求斐波那契(Fibonacci)数列的第 n 项(即 F(N))。斐波那契数列的定义如下:

F(0) = 0, F(1) = 1
F(N) = F(N - 1) + F(N - 2), 其中 N > 1.
斐波那契数列由 0 和 1 开始,之后的斐波那契数就是由之前的两数相加而得出。

答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。

2.2 示例

2.2.1 示例 1:

输入:n = 2
输出:1

2.2.2 示例 2:

输入:n = 5
输出:5

2.2.3 提示:

0 <= n <= 100文章来源地址https://www.toymoban.com/news/detail-624774.html

2.3 题解

class Solution {
    int MOD = 1000000007;
public:
    int fib(int n) {
        if (n < 2) {
            return n;
        }
        vector<int> f(n + 1);

        f[0] = 0;
        f[1] = 1;

        for (int i = 2; i <= n; i++) {
            f[i] = (f[i - 1] + f[i - 2])%MOD;
        }

        return f[n];
    }
};

到了这里,关于动态规划-斐波那契数的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 动态规划-斐波那契数

    斐波那契数是一个很好的熟悉和理解动态规划的例子,通过斐波那契数可以更好的理解动态规划的精髓,动态规划是后面的计算是如何借助于前面的计算结果来加快计算速度的。 斐波那契数和斐波那契数列其实可以看成是一道题,只不过两题的限制性条件稍微有差别 斐波那

    2024年02月14日
    浏览(35)
  • 算法Day38 | 动态规划,509. 斐波那契数, 70. 爬楼梯, 746. 使用最小花费爬楼梯

    动态规划是一种解决问题的算法思想。它通常用于优化问题,其中要求找到一个最优解或最大化(最小化)某个目标函数。 动态规划的核心思想是 将问题分解成更小的子问题,并通过存储子问题的解来避免重复计算 。这样,可以通过解决子问题来构建原始问题的解。动态规

    2024年02月09日
    浏览(58)
  • LeetCode 509 斐波那契数(动态规划)

     509. 斐波那契数 - 力扣(LeetCode)   斐波那契数  (通常用  F(n)  表示)形成的序列称为  斐波那契数列  。该数列由  0  和  1  开始,后面的每一项数字都是前面两项数字的和。也就是: 给定  n  ,请计算  F(n)  。 【思路】动态规划 动规五部曲: 1.确定dp数组以及下

    2024年02月07日
    浏览(56)
  • 动态规划之 509斐波那契数(第1道)

    题目: 斐波那契数 (通常用  表示)形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是: , ,其中 n 1 给定 n ,请计算 。 题目链接:509. 斐波那契数 - 力扣(LeetCode) 示例: 解法:

    2024年02月12日
    浏览(60)
  • 算法训练第三十八天|动态规划理论基础、509. 斐波那契数 、70. 爬楼梯 、 746. 使用最小花费爬楼梯

    参考:https://programmercarl.com/%E5%8A%A8%E6%80%81%E8%A7%84%E5%88%92%E7%90%86%E8%AE%BA%E5%9F%BA%E7%A1%80.html 动态规划是什么 动态规划,英文:Dynamic Programming,简称DP,如果某一问题有很多重叠子问题,使用动态规划是最有效的。 所以 动态规划中每一个状态一定是由上一个状态推导出来的 ,这一

    2024年02月04日
    浏览(40)
  • 力扣第509题 斐波那契数 新手动态规划(推荐参考) c++

    509. 斐波那契数 简单 相关标签 递归   记忆化搜索   数学   动态规划 斐波那契数  (通常用  F(n)  表示)形成的序列称为  斐波那契数列  。该数列由  0  和  1  开始,后面的每一项数字都是前面两项数字的和。也就是: 给定  n  ,请计算  F(n)  。 示例 1: 示例 2:

    2024年02月07日
    浏览(49)
  • 算法刷刷刷|动态规划篇|509.斐波那契数| 70.爬楼梯| 746.使用最小花费爬楼梯| 62.不同路径| 63不同路径2| 343.正数拆分 | 96.不同的二叉搜索树

    509. 斐波那契数 斐波那契数 (通常用 F(n) 表示)形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是: F(0) = 0,F(1) = 1 F(n) = F(n - 1) + F(n - 2),其中 n 1 给定 n ,请计算 F(n) 。 70.爬楼梯 746.使用最小花费爬楼梯 给你一个整数

    2023年04月23日
    浏览(57)
  • 【动态规划专栏】专题一:斐波那契数列模型--------2.三步问题

    本专栏内容为:算法学习专栏,分为优选算法专栏,贪心算法专栏,动态规划专栏以及递归,搜索与回溯算法专栏四部分。 通过本专栏的深入学习,你可以了解并掌握算法。 💓博主csdn个人主页:小小unicorn ⏩专栏分类:动态规划专栏 🚚代码仓库:小小unicorn的代码仓库🚚

    2024年02月21日
    浏览(47)
  • 【LeetCode题目详解】第九章 动态规划part01 509. 斐波那契数 70. 爬楼梯 746. 使用最小花费爬楼梯 (day38补)

    斐波那契数  (通常用  F(n) 表示)形成的序列称为 斐波那契数列 。该数列由  0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是: 给定  n ,请计算 F(n) 。 示例 1: 示例 2: 示例 3: 提示: 0 = n = 30 斐波那契数列大家应该非常熟悉不过了,非常适合作为动规第

    2024年02月07日
    浏览(47)
  • 【算法学习】斐波那契数列模型-动态规划

            我在算法学习过程中,针对斐波那契数列模型的动态规划的例题进行了一个整理,并且根据标准且可靠一点的动态规划解题思路进行求解类似的动归问题,来达到学习和今后复习的必要。         所谓的斐波那契数列模型,即当前状态的值等于前两种状态的值之和。

    2024年02月04日
    浏览(56)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包