【高光谱图像的去噪算法】通过全变异最小化对受激拉曼光谱图像进行去噪研究(Matlab代码实现)

这篇具有很好参考价值的文章主要介绍了【高光谱图像的去噪算法】通过全变异最小化对受激拉曼光谱图像进行去噪研究(Matlab代码实现)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据、文章


💥1 概述

文献来源:

【高光谱图像的去噪算法】通过全变异最小化对受激拉曼光谱图像进行去噪研究(Matlab代码实现),算法,matlab,人工智能

 摘要:

高速相干拉曼散射成像通过可视化目标分子或细胞内细胞器的时空动力学,为揭示细胞机制开辟了一条新途径。通过以MHz调制频率从激光器中提取信号,电流激发拉曼散射(SRS)显微镜已经达到了散粒噪声限制的检测灵敏度。SRS显微镜中基于激光的本振不仅可以产生高水平的信号,还可以产生较大的散粒噪声,从而降低图像质量和光谱保真度。在这里,我们展示了一种去噪算法,该算法通过总变异最小化来消除空间和光谱域中的噪声。对于稀释的二甲基亚砜溶液,SRS光谱图像的信噪比提高了57倍,对于生物组织,SRS光谱图像的信噪比提高了15倍。最初埋藏在噪声中的目标分子的弱拉曼峰被解开。将去噪算法与多变量曲线分辨率相结合,可以区分秀丽隐杆线虫中富含蛋白质的细胞器的脂肪储存。总之,我们的方法在没有帧平均的情况下显着提高了检测灵敏度,这对于体内光谱成像非常有用。

关键词:

成像处理 无标记显微镜 非线性显微镜 拉曼光谱

原文摘要:

High-speed coherent Raman scattering imaging is opening a new avenue to unveiling the cellular machinery by visualizing the spatio-temporal dynamics of target molecules or intracellular organelles. By extracting signals from the laser at MHz modulation frequency, current stimulated Raman scattering (SRS) microscopy has reached shot noise limited detection sensitivity. The laser-based local oscillator in SRS microscopy not only generates high levels of signal, but also delivers a large shot noise which degrades image quality and spectral fidelity. Here, we demonstrate a denoising algorithm that removes the noise in both spatial and spectral domains by total variation minimization. The signal-to-noise ratio of SRS spectroscopic images was improved by up to 57 times for diluted dimethyl sulfoxide solutions and by 15 times for biological tissues. Weak Raman peaks of target molecules originally buried in the noise were unraveled. Coupling the denoising algorithm with multivariate curve resolution allowed discrimination of fat stores from protein-rich organelles in C. elegans . Together, our method significantly improved detection sensitivity without frame averaging, which can be useful for in vivo spectroscopic imaging.

关键词:

Imaging processing Label-free microscopy Non-linear microscopy Raman spectroscopy

📚2 运行结果

【高光谱图像的去噪算法】通过全变异最小化对受激拉曼光谱图像进行去噪研究(Matlab代码实现),算法,matlab,人工智能

【高光谱图像的去噪算法】通过全变异最小化对受激拉曼光谱图像进行去噪研究(Matlab代码实现),算法,matlab,人工智能 主函数代码:

clear all
close all
clc

addpath(genpath('./spectral_tv/'));

sel_exp     = 2;  % select an experiment (1 or 2)

% Set the number of rows, columns and frames.
M           = 128;
N           = 128;
K           = 50;

% Load a hyperspectral image (DMSO100%)
file_name   = '../data/DMSO100%.tif';
hyper_true  = read_hyperdata(file_name, M, N, K);
[rows, cols, frames] = size(hyper_true);

% Add noise in the hyperspectral image
if sel_exp==1
    tmp        = read_hyperdata('../data/DMSO10%.tif', M, N, K);
    sigma_true = estimate_noise_level(tmp);
elseif sel_exp==2
    sigma_true = 0.005:0.005:(0.005*frames);
end
hyper_noisy = zeros(rows, cols, frames);
for i=1:frames
    hyper_noisy(:,:,i) = hyper_true(:,:,i) + sigma_true(i)*randn(rows, cols);
end


% Spectral Total Variation
opts.beta   = [1 1 0.1];
runtime     = tic;
out_stv     = spectral_tv(hyper_noisy, opts);
runtime_stv = toc(runtime);
sigma_est   = out_stv.sigma;
psnr_stv    = psnr(hyper_true, out_stv.f);


% Original Total Variation
mu          = 1;
opts.w      = mean(out_stv.w(:));
opts.beta   = [1 1 0.1];
runtime     = tic;
out_tv      = deconvtvl2(hyper_noisy, 1, mu, opts);
runtime_tv  = toc(runtime);
psnr_tv     = psnr(hyper_true, out_tv.f);


% Print PSNRs between true and denoised images.
fprintf('Method: spectral tv, \t psnr: %6.4f, \t runtime: %6.4f\n', psnr_stv, runtime_stv);
fprintf('Method: original tv, \t psnr: %6.4f, \t runtime: %6.4f\n', psnr_tv, runtime_tv);

% Plot the true and estimeated noise level.
if sel_exp==1 || sel_exp==2
    figure;
    plot(sigma_true, 'LineWidth', 2, 'Color', 'g');
    hold on;
    plot(sigma_est, 'LineWidth', 2, 'Color', 'r');
    hold off;
    xlabel('frame');
    ylabel('noise standard deviation');
    legend('True', 'Estimated', 'Location', 'best');
end

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1] Chien-Sheng Liao, Joon Hee Choi, Delong Zhang, Stanley H. Chan and Ji-Xin Cheng, "Denoising Stimulated Raman Spectroscopic Images by Total Variation Minimization," Journal of Physical Chemistry C, Jul. 2015.文章来源地址https://www.toymoban.com/news/detail-624794.html

🌈4 Matlab代码、数据、文章

到了这里,关于【高光谱图像的去噪算法】通过全变异最小化对受激拉曼光谱图像进行去噪研究(Matlab代码实现)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 机器学习的学习准则(期望风险最小化、经验风险最小化、结构风险最小化)

    训练集是有N个独立同分布的样本组成,即每个样本(x,y)是独立的从相同的分布中抽取的。这个真实的分布未知 输入空间X和输出空间Y构成样本空间,对于样本空间中的样本(x, y)∈X x Y,假定x和y之间可通过一个未知的真实隐射y=g(x)来描述,或者通过真实条件概率分布来描述。

    2024年02月09日
    浏览(53)
  • 图像去噪滤波算法汇总(Python)

    上篇文章:图像数据噪音种类以及Python生成对应噪音,汇总了常见的图片噪音以及噪音生成方法,主要用在数据增强上面,作为数据集填充的方式,可以避免模型过拟合。想要了解图像数据增强算法的可以去看本人所撰这篇文章:图像数据增强算法汇总(Python)。 本篇文章将介

    2024年02月08日
    浏览(48)
  • 37基于MATLAB平台的图像去噪,锐化,边缘检测,程序已调试通过,可直接运行。

    基于MATLAB平台的图像去噪,锐化,边缘检测,程序已调试通过,可直接运行。 37matlab边缘检测图像处理 (xiaohongshu.com)

    2024年02月08日
    浏览(38)
  • 【图像去噪】基于原始对偶算法优化的TV-L1模型进行图像去噪研究(Matlab代码实现)

    💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 📚2 运行结果 🎉3 参考文献 🌈4 Matlab代码及文章讲解

    2024年02月14日
    浏览(39)
  • 数字图像去噪典型算法及matlab实现

    数字图像去噪典型算法及 matlab 实现 图像去噪是数字图像处理中的重要环节和步骤。去噪效果的好坏直接影响到后续的图像处理工作如图像分割、边缘检测等。图像信号在产生、传输过程中都可能会受到噪声的污染,一般数字图像系统中的常见噪声主要有:高斯噪声(主要由

    2024年02月03日
    浏览(41)
  • DFA的最小化

    一、实验目的 1.熟练掌握DFA与NFA的定义与有关概念。 2.理解并掌握确定的有穷自动机的最小化等算法。 二、实验要求 输入:DFA 输出:最小化的DFA 三、实验过程 1.化简DFA关键在于把它的状态集分成一些两两互不相交的子集,使得任何两个不相交的子集间的状态都是可区分

    2024年02月09日
    浏览(52)
  • 目标检测算法——图像去噪开源数据集汇总(速速收藏)

    数据集下载地址:https://sourl.cn/jdpJZ6 该数据集包含以下智能手机在不同光照条件下拍摄的 160 对噪声/真实图像: GP: Google Pixel  IP: iPhone 7  S6: Samsung Galaxy S6  Edge N6: Motorola Nexus 6  G4: LG G4 数据集下载地址:https://sourl.cn/kaYGxd 一个小型版本的数据集,它由代表 160 个场景实例的

    2024年02月10日
    浏览(43)
  • 基于深度学习的FFDNet图像去噪算法实战准备指南

    一、FFDNet图像去噪算法的复现代码下载 1、FFDNet的图像去噪算法的代码分为pytorch版本和matlab版本,下载的链接分别如下: (1)FFDNet-pytorch下载   https://download.csdn.net/download/qq_41104871/88233742 (2)FFDNet-matlab下载   https://download.csdn.net/download/qq_41104871/87659931 二、FFDNet图像去噪算

    2024年02月12日
    浏览(41)
  • 捕获最小化窗口的缩略图画面

    : capture minimized window window thumbnail IsIconic  最小化的窗口,API GetClientRect 返回的窗口尺寸是0x0,故无法通过GetDC+BitBlt捕获到窗口画面。 但是 Agora/zoom/tencentMeeting 都可以拿到最小化窗口的缩略图。经确认这个程序并没有注入任何dll到目标窗口,且也没有临时显示最小化了

    2024年02月07日
    浏览(51)
  • LeetCode——最小化字符串长度

    目录 一、题目 二、题目解读  三、代码  1、set去重 2、用一个二进制数记录每个字母是否出现过 6462. 最小化字符串长度 - 力扣(Leetcode) 给你一个下标从  0  开始的字符串  s  ,重复执行下述操作  任意  次: 在字符串中选出一个下标  i  ,并使  c  为字符串下标  i

    2024年02月08日
    浏览(62)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包